Syllabus ' |
R topics | tcale
. Ume =5 o TopicsandSub-top List of Practicals :
& gaa® (in cognitivedomain) M \ ————
; v Sali ’ | g e
Unit-1: 1o Describe function of he given pin of 8086, | 1.1 8086 Microprocessor : Salient features, Pin ‘ sr. No. Practical Outcomes (POs) :
. 1b. Explain with skeiches the working of pE e Ly - Factosd] B | ' ‘ :
mm . Ny N & . unction: ¥ - o RN g
given unit in 8086 microprocessor. = :lrchuectl}lzrt ‘;:Zr organization 5 1 Identify various pins of the 8086 Microprocessor, 1 02"
Refer ch: ; = . i , Re;
[Refer chapter 1] lc. State functions of the given registers of A A 2 Use assembly language programming tools and functions.
8086 microprocessor. 13 Concepts of pipelining 3 Use di ; : . =
1d Calulste the physical address for the | 1.4 Memory segmentation, Physical memory se different addressing mode instruction in program m 02"
T S addresses generation. { (a) Write an Assembly Language Program (ALP) to add two given 8 and 16 bit numbers.
g gmentation of 8086 g
mi ; | (b) Write an Assembly Language Program (ALP) to subtract two given 8 and 16 bit numbers.
T - . : | 4 (a) Write an ALP to multiply two given 8 and 16 bit unsigned numbers. mn 02
Anar 2a iscnbe the given steps of program 2.1 Program development ;‘/ﬂpé :A : Defining : (b) _Write an ALP to multiply two given 8 and 16 bit signed numbers.
The Assembly \{elopmcm / execution. problem and “’“5“’““5 e gonlhr'ns, 5 (8) Write an ALP to perform block transfer data using string instructions. m 02
Language 2b. Write steps to develop a code for the given Flowchart, Initialization checklist, Choosing b Wi ALP o, 2 A e
i T e W Chaverting ‘algorithms 1o | (b) te an to perform transfer data without using string instructions.
m‘ programming. assembly language programs 6 (a) Write an ALP to compare two strings without using string instructions. mn 02
e e e 22 Assembly Language Pro ming Tools : ‘ (b) Write an ALP to compare two strings using string instructions. i
correct the specified programming error. Editors, Assembler, Linker, Debugger ‘ 7 (a) Write an ALP to divide two unsigned numbers. : n 02
2d. Describe function of the given bl 2.3 Assembler directives. J (b) Write an ALP to divide two signed numbers.
directives with example. ‘ 8 Write an ALP to add, subtract, multiply and divide two BCD numbers. v 02 b
Unit-101 - 3& e s | BT Mactine Language Tnstroction format } 9 Implement loop in assembly language program v ©o02*
Instruction Set of - s B irensing. ok (a) Write an ALP to find sum of series of hexadecimal numbers.
B S
8086 3b. Describe the given ing with | 33 Instroction st s of, Instruct \ (b) Write an ALP to find sum of series of BCD numbers.
m‘wm addre: modes . cuons .
g exnmplm . Arithmetic instructions, Logical Instractions, | 10 (a) Write an ALP to find smallest number from array of n numbers. v v 02"
4 Z?hm the apcranan performed by the Data transfer instructions, Bit manipulation) (b) Write an ALP to find largest number from the array of n numbers.
en instruction during its execution. insts i ion i i { i
e S o v ;’m “’3“0"3;0 nsu":lng t:::f':lo"or IDZUUCU}:DS, ‘ 1 (a) Write an ALP to arrange numbers in array in ascending order. \ 02
Identify the addressin gram ranchin ;
- L e P D K e 2 \ (b) Write an ALP to arrange numbers in array in descending order.
12 (a) Write an ALP to arrange string in reverse order. v 02
Unit-1V : 4a Usethe gi |
‘ - gl;’:rll ul::o::ll c:f ::;:;ly language | 4.1 Model of 8086 assembly language programs ‘ (b) Write an ALP to find string length.
Assem Language PeoETRm. 4.2 Programming using assembler : Arithmetic | (c) Write an ALP to concatenation of two strings.
Programming 4b. Develop the relevant program for the operations on Hex and BCD numbe:) ;
given problem. e :mm breS fSum 13 (a) Write an ALP to check given 16-bit number is odd or even. 1\ 02
s gest numbers from i
4c. Apply relevant A control loops in the array, Sorting numbers in T (b) Write an ALP to count ODD and/or EVEN numbers from the amay of five 16-bit numbers.
= Zrogtam for the given problem. Descending order, Finding ODD, EVEN, 14 (a) Write an ALP to check given number is positive or negative. v 02
se string instructi i Positi i : '
5 2 .ons ffn' the given ositive and Negative numbers in the array, (b) Write an ALP to count Positive and/or Negative numbers in an array.
strings/block to manipulate its elements, Block transfer, Strin i
.) g Operations - Length, . g
Reverse, Compare, Concatenation e 15 (a) Write an ALP to count numbers of ‘1’ in a given number. v 02
Count Numbers of ‘1’ an d '0' in 16 bit (b) Write an ALP to count numbers of ‘0’ in a given number. 1l
number.
I 2
T P o 16 An assembly language program using procedures \ 02
= = e shvea simp?:"“e' g | > ;’rRo((;dum : Defining and callin g Procedure - (a) Write an ALP addition, subtraction, Snulllpﬁcalion and division.
Refer chapter 5 5b. Develop an assembly language program c ALL' f:im;}gl;- AR and NEAR Directives; (b) Write an ALP for using procedure to solve equation suchas Z=(A+B) * (C + D).
. . 1 i »
using the relevant procedure for the given R nstructions; Parameter | 17 Write an assembly language program using macros - A v 02"
problem. < passing methods, Assembly Language
- AL " Programs using Procedure (a) Write an ALP for addition, subtraction, multiplication and division. 3
z elop an assembly language 52 : ; o
using MACROS for the given prob?l:orfam KDI;‘ .DiDcf?nmg Macros, MACRO and (b) Write an ALP using MACRO to solve equation such as Z = (A + B) (C+D).
. rectives, Macro wi 3
5d. Compare' pmced‘ ures and macros on the Assembly Language Progmm:“:;i: aranacell::. e
basis of the given parameters, g : ‘ Note : The practicals marked as ¥’ are compulsory.
P |
e]
(4) f

(5)

Iﬁ Table of Contents
Microprocessors (MSBTE - Sem 4 - Comp.) 1
......................... 2-1
; - ~ + syllabus Topic : Defining Problem--- o
221 Defining the PIODIOM ocouvansitassssemmasasinssemsssnssmssezsssssseness
= - e Algorithm
Chapter 1: 8086-16 Bit Microprocessor 110143 | ¥ oy il §-16, W-16, W-17)
222 Algorithm (S-14, W-14, J
Syilak : 8086 Mi . Sahent Tea Pin v Syllabus Toplc + FIOWCRAI . ..ooosimsrnssssssssssssassnnssssenes
descriptions, Architecturs of 8086 - el Block di 223 Flowchart (514, W-14, S-16, W-16, W-17,8-18).......2:2
Register organization, Concepts of plpelining, Memow 5 bus Toplc : Initialization CHECKIISt.........c.cooevee 2-2
segmentation, Physical memory addi g jon. Y > 2-2
. Syllabus Toplc : 8086 Mi & 141 224 Initialization Checklist
1.1 Introduct Ay L7 Syllabus Topic : Choosing Instructions
v Syllabus Topic : Salient Features .14 | 225 Choosing instruction
12 Salient Feature of 8086 Microprocessor v Syliabus Topic : Converting Algorithms to
(S-14, W-16, S-17, W-17) 1-1 P e Tt S a1 1 I —— 22
5 Syliabus Topic : Pin Description 12 | 226 Converting Algorithms to Assembly
13 Pin Description of 8086 (S-14, W-14, S-15, Language Program 22
W-15, S-16, W-16, S-17, W-17, S-18). v Syllabus Toplc : Assembly Language Program
% Syliabus Topic : Architecture of 8086 : Functional D 1t Tools 22
Block Diagram, Register Organization 15 -
i 3 ~ o 23 Assembly Language Program Development Tools2-2
¢ ntenal Architecture of 8086 (W-14, S-15,
y , §-15, ditors (W-14, W- 22
W-15, S-16, W-16, S-17, W-17) ccccooooooooo. Tshilens S (14, W5 :
141 Execution Unit[EU] Z32 S Az,
(S-14, W-14, W-15, S-16, W-16, S-18) 16 (S-14, W-i4, S-15, W-15, 8-16, S-17, S-18).
142 Bus Interface Unit [BIU] (W-14, S-18) 18 | 233 Linker(S-15, S-16, W-16, W-17).
v Syllabus Topic : Memory Segmentation.................... 18 | 234 Debugger (W-16, S-17, W-17)
1.5 Memory Segmentation 24 Program Development Process (PDP)...........cccccovueue. 2-3
(S-15, W-15, W-16, S-17, W-17) ._...........cooovvrnn. 1-8 241 Source File Creation 23
% Syllabus Topic : Physical Memory 242 Object Code G tion .23
Add ti 18 | 243 Executable File Creation......................oooooovevovvvvvveerrnnnn, 23
1.6 - Physical Memory Address Generation 244 Program Running .23
(W-14, $-15, W-16, S-17, W-17) 245 Program Testing :
v Syllabus Topic : Concepts of the Pipelining...
: ; A ‘246 Program Debugging..................covceurveereenrrerresrennnnnn. 24
1.7 Concepts of the Pipelining (S-14, W-14, S-15, W-15,
§-16, S-17, W-17, S-18). Z Syllabus Topic : Assembler Directives 24
1.8 Differences between Minimum and Maximum Mode 25 Assembler Directives and Operator
Operation of 8086 (S-14, W-15, W-16, S-18)............ 1-12 (S-14, W-14, W-15) AT 24
o Chapter Ends 113 | 2541 Data Definition and Storage Allocation Directives
(S-15, W-16, S-17, W-17, S i et e 24
252 Program Organization Directives (S-15, S-18)........... 2-7
Chapter 2: The Art of Assembly Language 253 Value Retuming Attribute Directives.
Programming 2-1t02-12 | 254 Procedure Definition Directives
255 Macro Definition Directives
Syllabus : Program development steps : Defining problem and 256 Dath Con g i L
Constrains, Writing Algorithms, Flowchart, Initialization checklist, ' Ll S
Choosing Instructions, Converting algorithms to assemply || 2>7 Branch Displacement Directives
langua:e programs. 258 Flle Inclusion Directive (Wat0) o eiie:
Assembly Language Programming Tools : Editors, Assembler, [| 259 Target Machine Cod
J . le Generation
Linker, r, Assembler directives.
Bebugge ves Control Directive .
2 e a8 ies L5 e s iesae e 2712
‘ rence Assem
¥ Syllabus Topic : Program Development Steps......... 2-1 ket e bler Directive
: nstructi
22 Program Development Steps (W-15, §-17)................. 2-1 iy

@‘ Microprocessors (MSBTE - Sem 4 - Comp.) 2

Chapter 3: Instruction Set of 8086 Microprocessor Chapter 4 : soee Assembly Language Pmor-nlllng
3-1 to 3-31 4-1to0 4-58
Syllabus : Machine Language Instruction format, Addressing Syilabus : Model of 8086 "

modes. Instruction set, Groups of Instructions : Arithmetic
instructions; Logical or Bit manipulation Instructions; Data transfer
Instructions; String Operation Instructions; Program control transfer

or branching Instructions; Process (Machine) control Instructions.

Programming Using assembler : Mmmaﬂcoperaﬂommﬂumd
BCD numbers, Sum of series, Smallest and Largest numbers from
amay, Sorting numbers in Ascending and Descending order,
Finding ODD, EVEN positive and negative numbers in the array,
Block transfer String operations Length, Reverse, -Compare,

3.1 Introduction 31 Cor tion, Copy,~Count numbers of ‘1’ and ‘0’ I 16 bit
v Syllabus Toplc : Machine Language number. = =
{nstruction Format 3-1 v Syllabus Toplc : Model of Assembly %
¥ L P
3.2 Instruction Format (S-14) 3-1 g " i N
v Syllabus Toplc : Addressing Modes of 8086..........33 | *' lodel of Assembly Langieoe EousING
£ 8086 (W-15, W-16, W-17)
33 Addressing Modes o . s a2 ey s
(S-14, W-14, S-15, W-15, S-16, W-16, , W-17) 3+ 7 sy‘uwnw P i oA blor
v Syllabus Topic : Instruction Set...........cccourucvnmuncience 37 | 43 B e &
34 Instruction Set of 8086 37 | 431 Addition of Two Numbers (W-14, $-17)
7 Syllabus Toplic : Data Transfer Instruction.................38 | 432 Subtraction of Two Numb
3.4.1 Data Copy / Transfer Instructions (S-18, S-17, W-17)
. (s-15, W-15,S-16, W-16, S-17, W-17, §-18).............. 38 | v Syllabus Toplc : Sum of Series.
v Syllabus Toplc : Arithmetic INStrUCions 311 | 433 Sum Numbers in the Array [SUM of SERIES]
342 Arithmetic Instructions (S-14, W-14, S-15, W-15, (W-14, S-17, -18)
S-16, W-16, W-17, S-18)oovooreemnsemrmneeercionee 311 | 434 Muttiplication of U"S'W'“ and Signed Numbers
v Syllabus Toplc : Logical or Bit Manipulation WAl
435 Division of Unsigned and Signed Numb
Instructions 3-16 |
(S-14, W-16, W-17, S-18)
343 Logical or Bit Manipulation Instructions 436 Arithmetic Operations on BCD Numbers
(S-14, W-14, S-15, W-16, W-17,S-18) 3-16 4.3.6(A) Addition of BCD Numbers
v Syliabus Topic : Program Control Transfer or (W-14, W-15, W-16, S-17,8-18) e e 4-16
Branching Instructions 3-21 4.3.6(B) Subtraction of BCD numbers 5 4-18
344 Program Control Transfer or Branching Instructions 4.3.6(C) Multiplication of BCD NUmMberscc.ouvurmueasens 4-19
(W-14, W-15, §-16, S-17, W-17) ..o 321 | 4380) DscnotBeD a2
PO (et ‘s e T e v Syliabus Toplc : Smallest Number from the Array....4-23
- n
S e 437 Smallest Number from the Aray (W-14) 423
15519 324 | 438 Largest NUMbOr oM the AITaY ... 4-26
3.4.4(B) Comparison of JNC and JMP Instructions in 8086 (S-15, W-15, W-17) 428
(515, 5-18) 324 | 439 Amange Numbers in the Array In Descending Order
v Syllabus Topic : Process Control Instructions......... 3-24 (S-16) - 428
345 Process (Machine) Control Instructions v Syliabus Topic : Sorting Numbers in Ascendi ing and »
(W-16, S-17)........ Descending Order. 4-30
346 Flag Manipulation Instructions (W-16, S-18)... 4.3.10 Amange Number in Ascending Order
v Sylisbus Toplic : String Operation Instruction.. (W-14, S-15, W-15, W-16)coooo e ... 4-30
v
347 Sting Manipulation Instructions Syllabus Toplc : Finding Odd and Even Numbers
(S-18, W-14, 5-15, W-15, S-16, W-17, S-18)........... 325 e Ay = 432
43.11 Finding Odd and Even Numbers in the Armay.............4-32

o Chapter Ends 3-31

4.3.11(A) Test the 8 Bit Number for Odd or Even

(518, 5-17)

@Miempmesssors (MSBTE - Sem 4 - Comp.) 3 Tabp ol Conens
4.3.11(B) Test the 16 Bit Number for Odd or Even
(S-14, 8-17) 4-33
4.3.11(C) Count Odd Number in the Array of 16 Bit Numbers Chapter 5 : Procedure and Macro el
£ e Language Program 5-1t0 5-16
4.3.11(D) Count Even Numbers in me Amay of éy“.m. : Procedure : Defining and calling, Procedure - PROC,
16 Bit Numb 435 || ENDP. FAR, and NEAR ‘Dlre‘cﬂvesi Ft:;gz:;“?m;:mﬁ:;;
4.3.11(E) Addition of Only ODD Numbers in the Array ;’mcedum'passlng '
. (W1g) 435 || Macro : Defining Macros, MACRO and ENDM Directives. Macro
4.3.11(F) Addition of Only EVEN Numbersin the Ay 435 | | with p Assembly Language Programs using Macros.
Y. Syliabus Topic : Finding Positive and Negative v yllabus Toplc : Procedures . g
Numbers in Array s A5 Procedures (S-14, W-16, S-18)cooccouvrisivinmnne. 5-1
4.3.12 Finding Positive and Negative Numbers from v e sl owey -
ST - s ::::dgm - 'PHOC, ENDP, FAR and i
4.3.12(A) Test the 8 Bit Number for Positive or Negative.......... 437 | 55 Defining Near or Far Procedures (S-14, W-14, S-15,
4.3.12(8) Test the 16 Bit Number for Positive or Negative........ 4-37 W-15, S-16, W-16, S-17, W-17,5-18)c0.o0cooor 5-1
4.3.12(C) Count Positive Number In the Array of 521 Directives for Procedure (W-16, S-17, W-17).....
16 Bit Ni 438 | 7 Syllabus Topic : CALL and RET Instructions...
4.3.12(D) Count Negative Numbers In the Array of 522 Procedure Call [CALL Instruction]
16 Bit Numb 439 (S-14, W-14, S-15, W-15, S-16, S-17, W-17, S-18)......5-3
v Syllabus Topic : Block Transfer................c.......... | R naogec e o (RET: atnicton)
4.3.13 Block Transfer 4-40 7 -(w-"' s-:-:)pk_- : P Passing Method :::
. 3 . Y Gy
::::‘(:: n’;'."n:“‘s:‘::!:nss:u‘"; :‘3:::’:5::)7) ~~~~~~~~~~~~~~~~~~~~~ x :z:(1 :aramster Passing in Procedure (S-14, W-15)..........5-4
A0 R e t 'assing Parameters through the Registers................. 54
4.3.14 Comparison of Two Strings (S-14)co............ 442 5.2.4(B) Passing Parameters on the Stack (S-15)54
4.3.14(A) Without using String Ir 442 5.2.4(C) Passing Parameters in an Argument List ..5-5
4.3.14(B) Uslﬁg String Instructions . s 525 Saving Procedure State Information
- Syliabus Topic : String Operation Reverse........... it v Syllabus Topic : Macros...................ccccoooorveennenn...... 55
4315 Display String in Reverse Order (W-18, S-17)............ 4-47 is :;T;::s:" o s-.ts, A 29
v Syliabus Toplc : String Operation/Length <448 | 54 Defining M::: (:wl):t:m;ih:a;ms
4.3.18 Find Length of String (W-14, S-16, W-17) 448 | Syllabus Topic : MAC'RO E,',d ;;;)w-m" . s
v Syllabus Topic : String Operation Concatenation 449 | 5.4.1 Directives for Ma'c:os(w-u bl i
4.3.17 Concatenation of Two Strings (S-15)....................... 449 | v Aot T e ') ..
4.3.18 Convert Lower Case String to Upper Case.............. 4-50 542 Macro wii e
- g with Parameter or Arguments.....
- 43.19 Convert Upper Case String to Lower Case................. 450 | 543 Conditional MACRO Expansion (S-15)

4.320 Convert BCD Number to Hexadecimal 7 Syilabus Topie : Assembly Language.Pr.o i
E (W-16, 5-18) P e grams using
4.321 Convert Hexadécimal Number to BCD. 58 Programming using Procedures 58

4322" BCDto ASCII G 4sa | ®51 Prooramto Periom Arthmetic Operation Such as
4323 ASCitoBCD G o m. Subtraction, Multplication and Division using
v Syllabus Topic : Count Numbers of 1 and 0 in 552 Pmm:: (::::)
: T 3 s Pmoe?:l::umm in the Array in Ascending
4324 Count Numbers of One's and Zero's in 8 Bit or 16 Bit 553 Program 1o Arange Numbers n s ner - o 0
Number (S-14, 8-15, W-16, W-17,5-18)................. 4-54 Order using Procedure M Qe
) Chaptef Ende e 554 Program to Find Smallest Number from the Array using

Procedure (S-17)

@ Microprocessors (MSBTE - Sem 4 - Comp.) 4 Table of Contents
555 Program to Find Largest Number from the Array using 56.1 Simple Program for Addition of Two Numbers -
Procedure. 5-10 using Macro
5.5.6 Program for Addition of Series of 8 bit Numbers using 562 Smallest Number in the Array using Macro ...
Procedure (S-16, W17)c.cccvviecmernrnieniennniccianie 5-11 563 L st Number in the Array using Macro.....
5.5.7 Program using Procedure for Performing the Operations 5.6.4 Program to Concatenating Source String to
Z=(A+B)*"(C+D).. e 5-11 - jon String 5-14
5.5. Procedure to find Factorial of a Number
2R = u: 2 sls sip | 365 Display Sting Onthe 5-15
WS 5): P = 5.6.6 Using Macros, Assembly Language Program to
i i umber
S s b L A 52 Solve P = ¥ + yZ where x and y are 8 bit Number......5-15
using rocedur N " iy : 567 Using Macros, Assembly Language Program to Solve
rs
5.5.10 :rogram to Mu:trlx‘f”!i‘bslt) umbers using o Z=(A+B)" (C +D) where A, B, C and D are 8 Bit
rocedure (W-14, W-15)c.ccoooiiiiiiniiinnnines Numbers (S-16) 5-16
5511 Program using Procedure to Add Two BCD Numbers -
W-17) 513 o Chapter Ends
4 Syllabus Topic : Assembly Language Programs using * ListofP L-1to L-28
Macros... e 5-13
5.6 Programming using Macros . 5-13
List of Practicals
sr. No. Practical Statement o
Practical 1 Identify various pins of the 8086 Microprocessor. L-1
Practical 2 Use assembly language programming tools and functions. L1
Practical 3(a) Use different addressing mode instruction in program - Write an A bly Language Program (ALP) L2
to add two given 8 bit and 16 bit numbers.
Practical 3(b) Use different addressing mode instruction in program - Write an ALP to subtract two given 8 bit and L-3
16 bit numbers.
Practical 4(a) Write an ALP to multiply two given 8 bit and 16 bit unsigned numbers. L4
Practical 4(b) Write an ALP to multiply two given 8 bit and 16 bit signed numbers. L-5
Practical 5(a) Write an ALP to perform block transfer data using string instruction. L6
Practical 5(b) Write an ALP to perform block transfer data without using string instruction. L-6
Practical 6(a) Write an ALP to compare two strings without using string instruction. L-7
Practical 6(b) Wirite an ALP to compare two strings using string instruction. L9
Practical 7(a) Write an ALP to divide two given unsigned numbers. L-10
Practical 7(b) Write an ALP to divide two given signed numbers. L-10
Practical 8 Write an ALP to add, subtract, multiply and divide two given BCD numbers. L-11
Practical 9(a) * | implement loop in assembly language program - Write an ALP to find the sum of series of L-14
hexadecimal numbers.
Practical 9(b) Implement loop in assembly language program - Write an ALP to find the sum of series of BCD L-15
numbers.

@; i R . Table of Contents
: Practical Statement mne
Practical w(a)-A Write an ALP to find the smallest numbers from amay of n numbers. ——;.18
Practical 10(b) WmaunALPtoﬁm!hehmestnum:erslmmeansyolnnumbers. —L
Practical 11(a) Write an ALP to amrange in amay in order. =)
Practical 11(b) wﬂfe an ALP to amange numbers in array in descending order. S
Practical 12(a) Write an ALP to arrange string in reverse order. =20
Practical 12(b) | Wite an ALP to find string length. 2!
Practical 12(c) | Wiite an ALP to concatenation of two strings. =22
Practical 13(a) Wirite an ALP to check given 16-bit number is odd or even. L:29
Practical 1 :
3(b) | Write an ALP to count ODD and EVEN numbers from the array of five 16-bit numbers. L-23
Practical 1
4(a) | Wite an ALP to check given is positive or negative,” L24
. Practical 1 i
4(b) |, Write an ALP to count Positive and Negative numbers in an array. L-24
Practical 15(a) | Write an ALP to count numbers of 1" in given number. L-25
Practical 15(b) | Write an ALP to count numbers of ‘0’ in given number. L-26
Practical 1 i
6(a) An assembly language program using procedure - Write an ALP addition, subtraction, multiplication L-27
and division.
Practical 16(b) An assem i ‘
bly language program using procedure - Write an ALP using procedure to solve equation L-27
suchasZ=(A+E)*(C+D).
Practical 17(a) | An assembly langua i
j ge program using Macros - Write an ALP addition, subtracti It
: ey ’ ion, multiplication L-28
Practical 17(b) An assembly langua
ge program using procedure - Write an ALP using MACRO to solv
suchasZ=(A +B)* (C +D). el .
Qaa

“PT
2

UNIT - |

Syllabus

8086 Microprocessor : Salient features, Pin descriptions, Architecture of 8086 - Funcfional Block diagram, Regismr
organization, Concepts of pipelining, Memory segmentation, Physical memory addresses generation.

Syilabus Topic : 8086 Microprocessor

Syllabus Topic : Salient Features

1.1

Introduction

- ! The 8086 is the ﬁrst 16- bn nucropmcessor developed in 1978
e e

by an Intel Cqmorauon

The 8086 microprocessor has a much more powerful

instruction set along with the architecture developments
which provides programming flexibility and improves the
speed of operation as compare to 8-bit microprocessor.

The 8086 is a 16-bit HMOS microprocessor. It is avmlable in
a 40 pin IC and operates at 5 volts DC supply.

Its electronic circuitry consists of 29000 transistors. It is
implemented in N-channel, silicon gate technology and
available in three versions i.e. 8086(5 MHz), 8086-2(8 MHz)
and 8086-1(10 MHz).

The 8086 microprocessor is no longer used, but the concept of
its principles and structure is very much useful for the
understanding of other advanced Intel microprocessors.

The 8086 have 20 address lines using which we can interface

= 1 MB of memory mean it can address up to 1 MB

memory.
Out of 20 address lines, 16 address lines are multiplexed with
data line and named as ADg-ADs.
Remaining four address lines are also multiplexed with status

signals.

1.2 Salient Feature of 8086
Microprocessor

= (MSBTE - S-14, W-16, $-17, W-17)

Provides 20 address lines, so um Kbym (1Mbytes) of

memory can be addressed.

Multiplexed 16-bit address and data bus ADg — AD,‘n_'n
minimize numbers of pin on IC.

Operating cleck frequencies are 5 MHz, 8 MHz, 10 MHz
Arithmetic operation can be performed on 8 bit or 16 bit

signed and uns:gned data including multiplication lnd

dmsmn

Opemes in single processor and mulupmoesgﬂgw I{
i.e. operating modes. 2
The instruction set is powerful, flexible and can
_programmed in high level language like C language.

B Micrprocessors uss e - sem .- Comp)

8086-16 Bit Microprocessor

1-2

Provides 256 types of vectored software interrupts.
Provide 6-byte instruction queue for pipelining of instructions

Q.138 Explain the function of following pins of 8086

execution. microprocessor.)
e i MX n/ DY
= Generate 8 bit or 16 bit I/O address so it can access maximum) MN/MX A RE/t
6 ;
Km.m'wf' (i) ALE (v DTAR
o (;uqu‘m in maximum and minimum mode to achieve high (Ref. sec. 1.3) m
ormance level. . sec. 1.
ion of following pins of 8086
— Supports 24 different addressing modes. Q.1.39 State the function of g p
~ Supports multiprogramming. miCroprocessar.
— Provides separate instructions for string manipulation. () DTR (i) NMI
Syllabus Topic : Pin Description o {iol D '
(Ret, sec. 1.3)
1.3 Pin Description of 8086 mjcm'll)'h“:Oc :;i,% 131 shows the pin diagram of 8086
= (MSBTE - S-14, W-14, 5-15, W-15, a1 0 Ve
S-16, W-16, S-17, W-17, S-18) AD, C}2 {77 ADjs < Multplexed Address Data pn
A AD s ArefSy
Draw tne pin diagram of 8086. . A0] 4 ArfSy
(Ret.sec. 19 oG
tats the - 6
State the funciion of following pins of 8086, wdi s,
(ﬂ) “TEST. : ; ®) BH_E Wﬁnh:; 3 : : R_Ml){mﬁ-smninmm/mﬁmummode
" INTA (4 DTVR datmbus -\ AD; 10 AOGT, (HOLD)
(Ref. sec. 13) il sl ey
State the function of following pins of 8086. A, s 5)
M e T AD, CJt4 §° (oA
ADy 15 5 (OFR)
\ 40, 6 s, (M
‘"‘"'W‘{ s Lyt o8 @
MO Yo \—MlnllmmM)dest rals
oK CJa- Ready g

@ DOTR
E e |
maskable and non-maskable intermupt | | ~

Maximum Mode signals

Fig. 1.3.1 : Pin diagram of 8086 Microprocessor

ADy-AD,q

These lines are time-muli iedirection
plexed bi-directi i
ey rectional tristate

During T clock cycle of the bu carry
s cycle, these i
order 16-bit address. " e

During T;, Ty and Ty, they carry 16-bit data.

-) ;
A(i.) ADy-AD; lines carry lower order byte of data and
5-AD 5 carry high order byte of data.

Ais/Se, Ay/S, AyyfS,, A1¢/S;

Th ; ! . .
e5¢ are time sharing multiplexed address i atatus Tincs!

During T, clock cycle, these lines carry upper four-|

3 q b.t addmss
and during [/0 operation, these lines are low. :

@‘Mlcmprocessors (MSBTE - Sem 4 - Comp.)

BHE/S; (Bus High Enabie / Status)

1-3

'8086-16 Bit Microprocessor

During T,, Ty and Ty, S and S, carry status signal and these
status line are used to identify memory segments as shown in
Table 1.3.1.

Ss is an interrupt enable status signal and is updated at the
beginning of each clock cycle.

Table 1.3.1
S, S, Segment register
0 0 ES
0 1 SS
1 0 CS or none
1 1 DS

The Bus High Enable signal is used to indicate the transfer of
data over higher order (Dys-Dg) data bus shown in
Table 1.3.2.

It goes low for the data transfer over Dg - Dy and is used to
drive chip selects of odd address memory bank or peripherals.

BHE in combination with A, determines whether a byte or
word will be transferred from / to memory locations.

The BHE/S; is a time-multiplexed line, so during T to Ty the
status signal S, is transmitted on this line.
It remains always high.

Table 1.32
B—— Ay Word / Byte Access
0 0 Whole word from even address
0 1 Upper byte from/to odd address
1 0 Lower byte from/to even address
1 1 None
RD (Read)

READY

It is an active low read signal generated by the processor to
indicate that the processor is performing read operation with

memory or /O depending on the status of M/IT) signal.

This signal is used to read devices, which are connected to the
8086 local bus and remain tri-stated during ‘hold
acknowledge’ (HLDA).

This is an acknowledgement signal from the slower 1/O
device or memory.

It is an active high input signal used to synchronize slower
peripheral/memory with faster microprocessor.
When high, it indicates that the peripheral device is ready to
transfer data.

Q. 1.3.10 How is an 8086 entered into a wait state ?

 (Ref. sec. 1.3)

READY pin can be used to add wait state. When this pin is
high, the 8086 is “READY" and operates normally.
If the READY input is made low at-the right time in a
machine cycle, the 8086 will insert one or more, wait state

between T, and T, in that machine cycle.

An external hardware device is set up to pulse READY low

before the rising edge of the clock in T,

After the 8086 finishes T, of the machine cycle, it enters the
wait state. :

During a WAIT state, the signals on the buses remaining the

same as they at the start of the WAIT state.

The address of the addressed memory location is held on the

output of latches, so it does not change, the control bus signal

M/IO and RD , also do not change DURING the WAIT state,
Twarm- .

The memory or port device then has at least one more clock
cycle to gets its data output. :

If the READY input is made high again during T; or during
the WAIT state, then after one WAIT state, the 8086 will go
on with the regular T, of the machine cycle.

If the 8086 READY input is still low at the end of a WAIT
state, then the 8086 will insert another WAIT state.

The 8086 will continue inserting WAIT states until the
READY input is made high again.

RESET

It is a system reset.

When this signal goes high, processor enter into reset state
and terminate the current activity and start execution from
FFFFOH.

This signal is an active high signal and must be active for at
least four clock cycles.

Maskable and Non-maskable interrupt

Maskable hardware interrupts can be mask or unmask and the
8-bit vector type must be provided by an interrupting device
to the processor during an interrupt acknowledge bus
sequence.

" In 8086, INTR is an maskable interrupt.

Non-maskable hardware interrupts use a predefined internally
supplied vector and cannot be masked or avoided, p
has to service these interrupts. =

In 8086, NMI and all software interrupt are non maskable.

INTR (Interrupt Request)

This is a level triggered interrupt request input and checked
during the last clock cycle of each instruction to determine
the availability of the request.
If any interrupt request is occurred, the processor enters the
interrupt acknowledge cycle.

NMI (Non-maskable Interrupt)

This is an edge triggered input interrupt request which causes
a Type-2 interrupt. 4
The NMI is not maskable by software.

TEST

This signal is used to test the status of math co-processor
8087.

The BUSY pin of 8087 is connected to this pin of 8086.
This input signal is examined by a ‘WAIT” instruction. |

1f the TEST signal goes low, execution will continue, else,
the processor remains in an idle state.

_ Pin 26 : DEN (Data enable)

= wmﬂu-,pmoesmmdsdmam.msmgmlnslnghmd

8086-16 Bit Microprocessor,

14

@m (MSBTE - Sem 4 - Comp.)

CLK (Clock input)

- Ihsdockmpmpmwdestbebnsxcnmngforpmeescot
‘operation and bus control activity.

- .l(u:ymn:tmsqnmwnvewnhﬁ%dmycycle

— The range of frequency for different 8086 versions is from 5
MHz to 10 MHz.

= V- +5V power supply for the operation of internal circuit.
— - GND - Ground for the internal circuit.

MN/MX
— This pin indicates the operating mode of 8086.

— There are two operating modes of 8086 i.e. minimum mode
and maximum mode.

- Whenthisp'nisoonneciedmv,,,lbepmccssoropemlesin
minimum mode and when -this pin is connected to ground,
plwessoromminmximummodg =

Mjoﬁ\! The pins 24 - 31 have
‘*g@edqﬂ:ﬁmugﬁu

Pin24: INTA (Interrupt acknowledge)
— Itisanactive low output signal interrupt acknowledge signal.

Pin 28 : M/IO (status signal)

This signal is issued by the processo!
access from an /O access.

r to distinguish memory

When this signal is high, memory o0 80 When thia

signal is low, an /O device is accessed.

Pin29: WR (Write)

— Jtis an active low signal issued by the processor to write data

to memory or J/O device depending on the status of M/IO
signal.

Pin 30 : HLDA (Hold acknowledge)

— This is an active high output signal generated by the processor
after receiving the HOLD signal.

Pin 31 : HOLD

— When another master device such as DMA Controller needs
the use of the address, data and control bus, it sends a HOLD
request to the processor through this line.

— Itis an active high input sighal.

Fummmodedopnﬁ,mepmmﬁ(h
kept low. The pins 24 - 31 have unique function for
nu:implndeqlopunﬁmugivmbdow:.

— When processor receive INTR signal, the processor comp
. current machine cycle and acknowledge the interrupt by
generating this signal.
Pin 25 : ALE (Address latch enable)
= hismacﬁvehighpnlseissnedbyth:pmcessmduﬁngT,
state of bus cycle to indicate the availability of valid address
on the ADy-ADs.

— This pin is connected to laich enable pin of latches 8282 or
74LS373.

— It is an active low signal issued by the processor during
middle of T, until the middle of T; to indicate the availability
of valid data over AD-AD;s.

— This signal is used to enable the transceivers (bi-directional
buffers) 8286 or 74LS245 to separate the data from the
multiplexed address / data signals.

Pin 27 : DT/R (Data transmit / receive)

— This output signal is used to decide the direction of data flow
through the transceivers (bi-directional buffers) 8286 /
741.5245.

whcndtpmwssormelvesdmd)enth:sslgnahslow

Pin 24, 25 : QSy, QS; (Queue Status)

— These lines provide information about the status of instruction
queue during the clock cycle after which the queue operation

; is performed.
— The Table 1.3.3 shows the status of QS, and QS,.
Tabie 1.3.3
051 | 05, _ Status
0 0 No Operation
0 1_| 1% byte of op-code from queue
1 0 Empty queue
1 1 | Subsequent byte from queue

Pin 26,27, 28§, 8,5, (Status signal)

These status signals show the type of operation, being carried
out
by the processor and required by the bus controller 8288
1o generate all memory or /O access control signals.
These
signals become active during T, of previous cycle and
remain active during T, and T, of the current cycle.

The
Se status lines are encoded ag given in Table 1.3.4.

Table 1.3.4

S, | s |8 Status -

0 | 0 | 0 | Interrupt acknowledge
0 1 | VO Read

0| 1| 0 |VOWrite

0] 1] 1 |Halt

1 | 0| 0 | Op-code Fetch

1| 0| 1 | Memory Read

1|1 | 0 | Memory Write

TIE] 1 | Passive

Pin 29 : LOCK
-~ This is an active low output signal used to prevent other
system bus master from gaining the system bus, while the

LOCK signal is low and generated by LOCK prefix
instruction.

— When it goes low, all interrupts are masked and HOLD
request is not granted.

Pin 30,31 : RQ /GT,,RQ / GT, (Request/ Grant)

- These pins are used by other local bus master such as DMA
Controller in maximum mode to gain the control of local
buses at the end of the processor’s current bus cycle.

— ‘The pins RQ/ GT, and RQ /GT, are bi-directional and

}6 /G_To have higher priority than ;26/6'1'_,
— After receiving request on these lines, the CPU sends
acknowledge signal on same lines.

-17. 4 Marks
Py

Syllabus Topic : Architecture of 8086 : Functional
Block Diagram, Register Organization

1.4 Internal Architecture of 8086

=D (MSBTE - W-14, S-15, W-15, S-16, W-186,
$-17, W-17)

Q.1.4.1 - Write any four important functions of any wo

~ units of 8086 microprocessor.

(Ref. sec. 1.4) =
Draw architecture of 8086 and label it. Write
the function of BIU and EU. ;

(Ref. secs. 1.4, 1.4.1 and 1.4.2) [EEERIELS

List all 16 bit register in 8086 and write their
. instructions, (Ref. sec. 1.4) © [SABEMIELS
Q,1.4.4 Draw the architecture of 8086 micmproeessor
; and state the function of BIU.

(Ref. secs. 1.4 and 1.4.2)

Draw the neat labeled amhileclure dlagram of
' 8086 microprocessor. ;

(Re. sec. 1.4)

Q.142

0.143

Q.145

Fig. 1.4.1 : Architecture or functional block diagram of 8086

As shown in Fig. 1.4.1, the 8086 CPU is divided into two
independent functional parts i.e.

Functional parts
of 8086 CPU

1. Execution Unit [EU] l

2. Bus Interface Unit [BIU] 1

Fig. 14.2 : Functional parts of 8086 CPU

8086-16 Bit Microprocessoy

@Micmpfooessors (MSBTE - Sem 4 - Comp.)

" Register Structure with their functions

Register
functions

Multiply/Divide
/O instructions

Loop/ Shift/ Repeat
count

Base registers

registers

Segment
registers

| code segment base address
/| Data segment base address
; "", Stack segment base address

| Extra n'agmem base address

| Flags
| Instruction

Index

Stack pointer

| pointer
Fig.143

1.4.1 Execution Unit [EU]
=> (MSBTE - S-14, W-14, W-15,

S-16, W-16, S-18)

S-16, 2 Marks
— o

egisters of 8086

The functions of execution unit are *

1. Totell BIU where (0 fetch the instructions or data from,
< (4]

2. To decode the instructions.

3. To execute the instructions.

The EU contains the control circuitry to perform various

internal operations.

A decoder in EU dec
generate different internal or external contro]

odes the instruction fetched from
memory to ;
signals required to perform the operation.

EU has 16-bit ALU, which can perform arithmetic and logical
operations on 8-bit as well as 16-bit data.

Flag register in EU is of 16-bit and shown in Fig. 1.4.5.

These registers contain nine active flags.

Five flags in the lower byte of this register are similar to 8085
flag register.

So, the flag register of 8086 is divided into two parts i.e.

condition code or status flags and machine control flags.

The condition code flag register including overflow flag of
8086 reflects the result of the operation performed by the
ALU.

The machine control flags are Direction Flag DF, Interrupt
Flag IF and Trap Flag TF.

@ Status flags

If there is no-carry/barrow out

Status flags

=$| 1. Cany Fiag (CF) |
-’tz. Auxiliary Carry (AF) j%
w{iarity Fiag (PF) j‘
-OlLZero Flag (zF) —l’
> 5. Sign Flag (SF)]
»Evemow Flag (OF) w

Fig. 1.4.4 : Status Flags

=> 1. Carry Flag (CF)

It i i ;
{15 set (o 1 if there is carry out of the MSB position i.e.

msl')lting from an addition or if a barrow is needed at MSB
during subtraction,

of MSB bi
el o ; bit of result, the CF

8086-16 Bit Microp!

[@.Microprocassors (MSBTE - Sem 4 - Comp.)

Auxiliary carry flag

=

Zero flag

Sign ﬂag—l

Overflow flag —l

Carry flag

Parity flag

Dis | D1s | P1a | P12 | P11 | Pio | Pa | Ds

D,

\\\\ OF | DF | | T

SF

Dg { Ds | Dg | B3 |
zF N A5 I

%

F
L Anterrupt flag

Direction flag

Trap flag

-»

Fig. 1.4.5 : Flag register format

2. Auxiliary Carry (AF)

If an operation performed in ALU generates a carry/barrow.
from lower nibble (i.e. Dy-D3) to upper nibble (i.e. Dy-Dy),
the AF flag is set i.e. carry given by D; bit to D, is AF flag.

This is not general-purpose flag;-it is used internally by the

processor to perform binary to BCD conversion.

3. Parity Flag (PF)

This flag is used to indicate the parity of result.

If lower order 8-bits of the result of an operation contains
even number if 1, the parity flag is set and for odd number of
1, the parity flag is reset. i

4. Zero Flag (ZF)

It is set, if the result of arithmetic or logical operation is zero
else it will be reset.

5. Sign Flag (SF)
In sign magnitude format the sign of number is indicated by
MSB bit.

If the result of operation is negative, sign flag is set. .
The sign flag is replica of MSB bit of result.

6. Overflow Flag (OF)

In case of the signed arithmetic operation, the overflow flag is
set, if the result is too large to fit in the numbers bits available
to accommodate it.

The overflow flag has no significance in unsigned arithmetic
operation.

@ Difference between Carry and Overflow Flags
Carry Flag j Overflow Flag
Generated during;the arithmetic Generated during the
and logical operation on unsigned | arithmetic and logical
numbers operation on signed
numbers

Generated by D7 or D15 bit of 8 | Generated by D6 or D14
or 16 bit number bit of 8 or 16 bit number

@ The three control flags

Three control flags

1. Trap Flag (TF)

2. Interrupt Flag (IF)

3. Direction Flag (DF) |

Fig. 1.4.6 : Three control flags
1. Trap Flag (TF)

It is used for single step control.

It allows user to execute one instruction of a program at a

time for debugging.
When trap flag is set, the program can be run in single step
mode.

2. Interrupt Flag (IF)

It is an interrupt enable / disable flag. -

If it is set, the maskable interrupt INTR of 8086 is enabled
and if it is reset, the interrupt is disabled.

It can be set by executing instruction STI and can be cleared
by executing CLI instruction. g
3. Direction Flag (DF)

The DF (Direction flag) is used in string operation.

If DF is set, string bytes are read or write from higher
memory address to lower memory address.

If DF is reset,the string bytes are read or write from lower
memory address to higher memory address.

The DF can be set by executing STD instruction and can be
reset by executing CLD instruction.

8086-16 Bit Microprocessor

@ £ 5 1-8

Microprocessors (MSBTE - Sem 4 Comp.) emporarly on the stack such as the contents

S ta ; 3

" General purpose registers of 8086 :‘: :ed:fPU registers, which will be ipquitd Imctsiage
E ion Unit (EU) eight 16-bit ‘gcneml purpose of execution. and offset pai; registers are CS: [P
registers named as AX, BX, CX, DX, SP, BP, SI and DI ~ The Default Segmert base

" Function of General Purpose register

1.4.2 Bus Interface Unit [BIU]

Out of these registers, AX, BX, CX and DX can be used
either as eight 8-bit registers i.e. AL, AH, BL, BH, CL, CH,
DL, DH or can be used as four 16-bit i.e. AX, BX, CX and
DX. (A
The AL register is called as 8-bit accumulator and AX is
called as 16-bit accumulator.

In addition to the general purpose job, some register has
special task such as CX is normally used as a counter, BX can
be used as a pointer and DX is used for I/O addressing to hold
the 1/O address in some instructions of the 8086
MiCToprocessor.
The other registers in EU are SP, BP, SI and DI. SP and BP
are pointer register, which holds 16-bit offset within the
particular segment. SI and DI are the index registers.
During the execution of string related i ion ister SI

and SS: SP.
@ [nstruction queue IQ (Queue) .
_ To increase the execution speed, BIU fetches as many as six

instruction bytes ahead to time from memory.

All the six bytes are then held in first-in-first-out 6-byte

register called instruction queue IQ.

— Then all bytes have to be given to EU one-by-one.

This pre-fetching operation of BIU may be in parallel with
execution operation. of EU, which improves the speed of
execution of the instructions.

Syilabus Topic : Memory Segmentation

1.5 Memory Segmentation

is used to store the offset of source data or slringwin data
segment while the register DI is used to store the offset of
destination in data or extra segment.

= (MSBTE - W-14, S-18)

names of segment registers in 8086

| keectsn [ETESTENDND
The function of BIU is to send address to:
(a) Fetch the instruction or data from memory.
(b) Write the data to memory.
(c) Write the data to the port.
(d) Read data from the port.
Various sections of the BIU are given below.
@ Segment Registers

© The Stack Segment SS register is used to points stack

O The Extra Segment ES register is used to address the

BIU has 4 segment registers of 16-bit each i.e. CS, DS, SS
and ES.

The memory pointers are used to point or address particular
memory location in memory

=) (MSBTE - S-15, W-15, W-16, S-17, W-17)

Q. 1.5.1 Describe. memory segmentation in 8086

microprocessor and list its four advantages.
(Ret. sec.1.5) (S5 narks]

Q.152 What is memory segmentation? How it is done

in 8086 microprocessor? 2 :
(Ref. sec. 1.5)
Q. 1.5.3 Explain the concept of segmentation in 8086.

(Ref. sec 1.5) W-16.SA7,W=17; 4 Marks.

= |The memory in an 8086 based s stem is_organized as
segmented memory and this memory management technique

is called as segmentation.
Syt el

— The complete physically memory is divided into a number of

logical segments in segmentation,

Siz.elof each segment is 64 Kbytes and addressed by one of
the segment register i.e. CS, DS, ES or SS.

The 16-bit content of the segment register holds the starting
address of a particular segment.

So, we need an offset address or displacement or effective

Following register acts as the memory poi

8086.

O The Code Segment CS register is used to address a
memory location in the code segment of the memory,
where the op-code of program is stored.

O The Data Segment DS register points to the data
segment of the memory, where the date is stored.

gister in

segment which is additional data segment used to store
data.

location in stack segment of the memory and used to

dress to address a specific memory location within a
segment,
The offset address is] 6-bit so
be FFFF H and hen
2"°= 64k locations,

the maximum offset value will
ce the maximum size of any segment is

FOOOH respectively,

The offset address valyes are from 0000H (o FFFFH so that

the physical addresses range from 00000H to FFFFFH =

@]‘Microprocessors (MSBTE - Sem 4 - Comp.) 1-9 8086-16 Bit Microprocessor

The segments register contains the higher order 16 bits of the Q.1.62 Describs mw 20 b

starting addresses for four memory segments i.e. Data generated in 8086

segment, Code Stack seg Extra seg that ; example. (Rdm

the 8086 CPU works with at a particular time. Q0.163 : R

Physical Address Byte 2

" reren Highest Address ComeE)
2 Q.1.64 Give the steps in physical add
8FFFF H Extra ES = 8000 H in 8086 microprocessor.
segment 84 k (Ret. sec. 1.6) § S-17.2 Marks
g0 Q.1.65 With the help of diagram, describe
8FFFF H Stack SS = 6000 H memory address generation of 8086. ;
segment S (Ref. sec. 1.6) B W17 4 Marks
00H ~ One Mbyte (1024 Kbyte) of physical memory can be interface
A Code CS=2000H with the 8086 microprocessor because 8086 has 20-address
’ pegment LS lines i.e. 22° = 1024 Kbyte or 1 Mbyte
2000 — The segment registers are used to hold 16-bit of the starting
1FFFFH Data ; I DS =6111(I)(00 H address of four memory segments.
10000 H n el — But 8086 has 20-bit address bus, so it can address any of
2 = 1 Mbytes in memory. _
— The address associated with any instruction or data byte is
) RS

— As shown in Fig. 1.5.1, the base address is nothing but the

— ' The 16-bits offset or displacement is added to the 16-bits

Fig. 1.5.1 : Memory segment

starting addresses of each segment, for example, the starting
base address of data segment is 10000H, 20000H for code
segment etc.

segment base register after shifting the contain of it toward
left by one digit to get 20-bits physical address.

@ Advantages of segmentation

1. The address associated with any instruction or data is only
16-bits though the 8086 has 20-bits physical address.

2. Segmentation can be used in muiti-user time shared system.
3. Programs and data can be stored separately from each other in
segmentation.
4. | We can have program of more than 64 kbytes or data more
than 64 kbytes by using more than one code or‘dala segments.
5. Segmentation makes it possible to write programs which are
position independent or dynamically re-locatable.
6. Segmentation allows two processes to share data.
7. Segmentation allows you to extend the addressability of a
processor.

Syllabus Topic : Physical Memory Address Generation

1.6 Physical Memory Address
Generation

=> (MSBTE - W-14, S-15, W-16, S-17, W-17)

Q.1.6.1 Describe the physical address generation

Address

only 16-bit called as effective address or offset or
displacement or logical address.

— The logical addresses are used to calculate physical address.

16 0 15 0
Effocive address| [Segmont address] 0000

Segment
Register

Ofisst

Fig. 1.6.1 : Physical address generation

— However, the address outputted by BIU is 20-bit called as
physical address; Fig. 1.6.1 shows how 8086 calculates
physical address from the effective address.

Other registers in this section are given as follows :

@ [nstruction Pointer IP

— The instruction pointer register holds the 16-bit address of the
next code byte within the code segment.

— The value stored in IP is called as offset or displacement.

— This offset is added to the code segment register after shifting
it by four bits, which include base address of the code
segment. For example, let us take CS = 3000 H and
P=0123H, '

- Fig. 1.6.2 shows the calculation of physical address from
CS and IP. : :

process | 8086 microprocessor. S
(Ref. sec. 1.6)

8086-16 Bit Microprocessor
1-10 =

. | 4 @Mlcmpmoessom (MSBTE - Sem 4 - Comp.)

Inserted zero
3FFFF H
cs: [e]efe]e]o]
Mmdbnbyl: A
e . [of1]2]3]
> =
B R L
‘ 23
Start of code —p 30000 H |-
segment %

Physical Address BY® | Top of stack

1 Ipnnedbm
wa ss: [E[o[o[o] o}
SP=FFEOH A5
E SP:
: e [FIF[ED)
)l
|) BFIFIEL
Start of —p 80000 H SS = 8000 H
segment

When we add offset 0123 H, the 30123 H becomes the 20-bit

Physical Add
s

Fig. 1.6.2 : Physical address generation for Code Segment
Before adding the content of CS and IP, the content of CS is
shifted left by four bits position.

Now CS contains 3000 H, when shifted left by four bit
positions, it gives 30000 H, which is base address of the code
segment i.e. start address.

_ physical address of the next instruction byte to be fetched.
20-bit physical address is normally represented as CS:IP.

Stack pointer SP

The 8086 allows us to set aside an entire 64 kbytes segment
as a stack. .
The upper 16-bit of the starting address of this segment is
loaded in the stack segment SS register.
The stack pointer SP register holds the 16-bit offset from the
smﬁngaddmssofthesegmcntwhcrcthewoidwasmosl
recently stored on the stack i.e. top of the stack.
The physical address of the stack is generated by adding the
contents of the stack pointer SP to the stack segment base
register SS during read or write operation with stack.
_So.thecomemofss stack base segment register is shifted
left by four bits and then the content of SP register is added to
it. For example, if SS contains 6000 H and SP

6.1
ek DI = 10A5H, pS = 2100H and displacement
ikt 58dHl.)S |5_ used as segment register then calculate
:h::.sc:mzms produced for different memory addressing
mode.
Solution :
Given : BX = 0158H, D!
Displacement = IB§7H

MOV AX, [BX] - Register Indirect add |

instruction the default base addressls register is DS
and oltl’lfs:?o r:eg:;?:r BX, so the physical address is calculated as

I = 10ASH and DS =2100H

ressing mode

given below
Zero is inserted 1
2 1 0 0 0 DS
1 5 8 BX

+ 0
pa= [Z]A]1]5]8]

MOV AX, [BX+DI] - Base Indexed Addressing mode

In above instruction the default base address register is DS
and offset is calculated by adding register BX with DI, so the
physical address is calculated as given below

Zero is inserted l
2SS0 =0 0. DS
+ OERINES I8 BX

0 A S5 DI

+ 1
pa=[2[zT1]e]p]

MOV AX, [1B57] - Direct addressing mode

In above instruction the default base address register is DS
and offset is given directly in instruction, so the physical address is
calculated as given below

H. The S8 is shifted left four bit position to give 60000 H.
After adding SP i.e. offset in to it, the resultant physical
address for the top of the stack will be 6FFE0 H as shown in
Fig. 1.6.3. This can be represented as SS:SP.

Zero is inserted il
2RISR 0¥ 0 DS
+ 1 B 5 7 16bitoffset
FFEO PA=[2|2|B|5]|7
Example 1.6.2

If DS = 345AH and S = 13DCH, calculate physical address.
Solution :

bSuppose instruction using SI as a offset register is MOV AX,
[SI] in Register Indirect addressing mode

In above instruction the default base address register is DS

and offset register I, so the physical address is calculated as given
below

Zero is inserted - i
345 A 0 ps
1 3D c g

rocessors (MSBTE - Sem 4 - Comp.

Example 1.6.3
What is displacement? How does it determine memory
address in a MOV [2000H], CL Instruction?

Solution :

The instruction pointer register holds the 16-bit address of the
next code byte within the code segment. The value stored in IP is
called as offset or displacement. Assume DS= AOOOH, Memory
address in MOV [2000H], CL is given below

Zero is inserted l
A 00 O 0 DS
2 0 0 0 Displacement

+
pa-[A]2ToTo]o]

Example 1.6.4

State the default segment base and offset pair register. If
CS = 1000H and IP = 2000H, then from which memory
location 8086 reads an instruction.

Solution : A
The default segment base and offset pair register are CS:IP
and SS:SP.
Zero is inserted)
1 0 00 0 CS
+ 20 0 L OBRO I
pa=[1]2]0]ofo]
After calculating physical address, then 8086 reads an
instruction from memory address 12000H in a code segment.

Example 1.6.5
Calculate the physical address generated by
(i) 4370 :561E (i) 7A32 :0028

Solution :
()
Zero is inserted l
4 3 7 0 0 Base
+ 5 6 1 E Offset
pa=[4[s[D]1]E]
(i)
Zero is inserted 1

7 A 3 2 0 Base
0 0 2 8 Offset

+
pa= [ATAT2T4]s]

Example 1.6.6
IF DS = C239H and S| = 8ABCH, then Calculate physical
address.
Solution :
Zero is inserted
G253

!
0 Cs
A CRIP

(@) C8
Solution :
(a) CS:IZOOHanleDEmHm_ephysicaladdmiocdcumed
below
Zero is inserted 1
12 0RO (0SS,
+ D E 0 0 SP

() DS : IFOOH and BX : 1A00H for MOV AX, [BX]
Zaoiginsmed =l
1 F 0O 0 0 SS
+ i A 0 0 SP
, pa=[2]ofaJofo]
Example 1.6.8 EUBEIRNAL [
If CS = 69FAH and IP = 834CH,

address generated.
Solution :
Zero is inserted l
6 9% R AN OICS
+ 8§ 34 nCRIR

pa=[7]2]2]ElCc
Example 1.6.0 ERTRIIBTE

Caiculate the physical address for

()DS=73A2H SI=3216H
(i) CS=7370H IP=561EH.
Solution :

@)

(i)

Example 1.6.10 ERERPAVEILE
Caloulate the physical address for the give
CS = 3420H, IP = 689A
Solution :
Zero is inserted l
3 *4l 2850 (ORNCS
A P

9
+ ‘8 B
pa=[1[aleTe]c]

6 8 9

— Stack is a reserved area of the memory in the RAM, where

— Stack operates on the principle of Last In First Out (LIFO),

8086-16 Bit Microprocesso,
—

@Micmpmce‘ssons (MSBTE - Sem 4 - Comp.) 1-12

Syllabus Topic : Concepts of the Pipelining

1.7 Concepts of the Pipelining

= (MSBTE - S-14, W-14, S-15, W-15,
S-16, S-17, W-17, S-18)

snciple of first in first out
on the pru‘lCIP
The queue operates
(FIFO).
So that the

fetched. ;
the order they ooy P instruction while the curren;

g which will redyce

tion unit gets the instruction for execution jp
execul

Feature of fetching . e
instruction is executing IS called pipel

the tion time.

e concept of pipelining of 8086

the s«ze of instruction pre-fetch queue

‘
- Explain the pipelining in 8086 microprocessor.
How is queuing useful in speeding up the
‘operation of 8086 microprocessor.

sec.17) | ;
fine pipeline. (Ref. sec. 1.7)

prove the execution speed of the processor,
8086, . pipelining is implemented by - provi ding
[6nb e u;u’e where as long as 6 one byte instructions can be
lnr):d \qwell in a advance and then one by one instruction goeg
S|

So, pipelining im|

for decoding and execution. -
So, while executing first instruction in amqueue, [I’I'OCCSsor
decodes second instruction and fetches 8™ instruction from
the memory.

In this way, 8086 perform fewh. decode and execute
operation in parallel ie. in single clock cycle as shown 'in

Fig. 1.7.1(b).

What is pipelining? State its need and how it is ERSIDMEIEFRIDSE. " F * D - -E

done in 8086 7 (Ref. sec. 1.7) [ETIRRIEIE e P e I e P e S o EY R

What is pipelining? How it is implemented in GRS 7 s o

Smicio : —— (@)
(Rpf. ssc. 1.7) : S:16.:2:Marks . m EZ] EI @ F - Fetch
- Explain the concept of pipelining in 8086

microprocessor with diagram. D [G] [2jioxcode

E [E E - Execute
g;:‘_. 1 2 3 4 5

(b)
Fig. 1.7.1 : Pipelined execution of three instructions

= The technique used to enable an instruction to complete with | @ Advantages of Pipelining

each clock cycle is called as pipelining. _
= .Normally. on a non-pipelined processor, nine clock cycles are
required for fetch, decode and execute cycles for the three | —
instructions as shown in Fig. 1.7.1(a). N =

= But, on a pipelined processor, the fetch, decode and execute | —

operation are performed in parallel, only five clock cycles

Pipelining enables many instructions to be executed at the
same time.

It allows execution to be done in fewer cycles.
Speed up the execution speed of the processor.
More efficient use of processor,

are required to execute the same three instructions as shown | 1-8 Differences between Minimum and

Fig. 1.7.1(b).

~ First instruction requires three cycles to complete the
execution.

= Next instructions then complete at a rate of one instruction
per cycle. g

— During the clock cycle 5 we have Iy completing, I, being
decoded and I being fetched as shown in Fig. 1.7.1(b).

temporary information may be stored,

Q.1.81 Compare PO

Q182 Differsntate pep

____Maximum Mode Operation of 8086

P (MsBTE- $-14, W-15, W-16, S-18)

§ UM and minimum mode
- Gonfiguration of 80ge, (g 3
Rt e 18) (any four points

Ween minimuy
o : m mode and
Maximum - moge microprocessor

(Elght pointy), - : ;

_(Refisec.1g)

MN/ M_X pin is connected | MN / MX pin is grounded.

ALE, DEN, DT/ R and

ALE, DEN, DT/R and INTA
signals are not directly

be generated using control
signals M/IO, RD , WR are

IORC, LOWC, AIOWC, are
generated by bus controller

available on 8086 directly. | 8288 using status signals S, ,

S_l and S, .

= INTA sigmale ke available and are generated by
No separate bus controller is | Separate bus contfoller (8288) available. R
required. is required.
— — — HOLD and HLDA signals RQ/GT, and RQ/GT,
Control signals M/ IO , RD , | Control signals M/IO, RD , I TP Ry v e
W_R are available on 8086 | WR are not available on 8086 another master in system {ntertacean e
directly. directly but status of the such as DMA controller. system swh s DMA
control signals are available oabollerd AU CoY o
on status pins Sy, S, and S, . 8087.
— | Control signals such as, Status of the instruction Status of the instruction queue
Courlsigah chm |98 queue is not available. is available on pins QSoand
L MRDC, MWTC, AMWC, s
LOW, MEMW, MEMR can 1.

Chapter Ends....
Qaa

The Art of Assembly
Language Programming

Er Microprocessors (MSBTE - Sem 4 - Comp.) 22
—

The At of Assanby Langage Programmig,

Syllabus Topic : Algorithm

2.2.2 Aigorithm
=> (MSBTE - S-14, W-14, S-16, W-16, W-17)

Q.223 Whatis algorithm ? (Ref. sec.)2.2.2) ’
S.14. W-14, S-16. W-16. W-17. 1 Mark

UNIT-ll [S

Syllabus

Program development steps : Defining problem and Constrains, Writing Algorithms, Flowchart, Initialization checklist,

Choosing instructions, Converting algorithms to assembly language programs.
Assembly Language Programming Tools : Editors, Assembler, Linker, Debugger, Assembler directives.

|

~ The formula or sequence of operations or tasks need to
perform by your program can be specified as a step in general
English and is often called as Algorithm.

Syllabus Topic : Choosing Instructions

2.25 Choosing Instructions

Nextswpiswchooseappmpriminmxcﬁmlhupafomu
your problem’s operations or tasks.
misixanimpommmzp,myonnmstknowenﬁm‘mm'
set of the microprocessor, the operation performed and flag
affected after the ion by the i i

Syllabus Topic : Converting Algorithms to Assembly

Language Programs 5

~ In short, an algorithm is a step by step method or
written in general English language of solving a problem

Syllabus Topic : Flowchart

2.1 Introduction

As compare to the high-level programming, assembly
language programming is slightly cumbersome.
’[hepmgrams written in assembly language are compact and
efficient.
'Ap_n?gmmhasmbeoonvenedmmacbin:codcforexecuﬁon,
s0 it is performed by the called as A bler.
Assembl'y Ianguzge programming requires good knowledge
of.mz.lchmc architecture, operating system and programming
principles.
A.ssembl)t language is case insensitive, so program can be
loaded either in uppercase, lowercase or combination of
lowercase and uppercase.
'["he program development tools such as editor, assembler,
Linker, and debugger are required for the programming.

Syilabus Topic : Program Development Steps

2.2 Program Development Steps

> (MSBTE-w-15,517)

'rPrognm Development Steps I

Flowchart 1

Step3 —» ‘
Step 4 —» , Initialization checklist }

Step5 —» l Choosing instructions l

Step 8 —

Converting algorithms
to
assembly language program

Fig.221 ; Program Development Steps

Q.2.2.4 What is flowchart? Sketch any four symbols

Syllabus Topic : Defining Problem

221 Defining the Problem

'lhe fu’xt 8l i o)
carefully ab':& :ﬁ“;m:l:ung Program is to define very
solve, ™ that you want the program to

At this poj
Ppoint You need ot
10 v
must know whgy You would | write doy

: wn program but you
ike to do, L 4

2.2.3 Flowchart
=) (MSBTE - S-14, W-14, S-16, W-16, W-17, S-18)

use in flowchart. State their use.
(Ref. sec. 2.2.3) S-14. 3 Marks
Q.2.25 Define flowchart, (Ref. sec. 2.2.3)
W-14,S-16, W-16. W-17. 1 Mark
Q.2.2.6 Draw the symbols used in a flowchart whiie
developing ALP. Mention the use of each
symbol. (any 4),(Ref. sec. 2.2.3) FEERIELS
— ' The flowchart is a graphically representation of the program
operation or task.
— The specific operation or fask is represented by graphical
symbol such as circle, rectangle, diagonal, square .and
parallelogram etc. given below :

Process 4 Input/Output ;

Connector

Subroutine

2.2.6 Converting Algorithms to Assem

Language Program g
Onceyouhaveseleaeddwinnrucdmsformcopa:ﬁomm
be performed, then arrange these instructions in sequence as
per algorithm, so that desired output must be obtaining after
execution.

In bly language program, a first step is to set up and
declare the structure that the algorithm will be working
with, then write down the instruction required for
initialization at the start of the code section.

Next d ine the i i quired to implement the
major actions in the algorithm and declare how data must be
positioned for these instructions.

Syllabus Topic : Assembly Language Program
Development Tools

2.3 Assembly Language Program

Development Tools

Syllabus Topic : Initialization Checklist

2.2.4 Initialization Checklist

— In program there are many variables, constants and various
part of the system such as segment registers, flags, stack,
programmable ports etc. which must be initialize properly.

— The best way to approach the initialization task is to make the

checklist of the entire variables, c ts, all the registers

Assembly language
program development tools

Fig. 2.3.1 : Assembly language program development tools

2.3.1 Editors

flags and programmable ports in the program.

— At this point you will come to know which parts. on the

(Ref. s

checklist will have to be initialized.

: Assembly Language P"Ogm T e
QMM&M-MJ 23 The Aol "t Process @.MicmpmcessorS(MSBTE-Sem-Comp.) 2-4 The Art of Assembly Language Programming
L . ment Proce —— —= .
An editor is a program which helps you to constroct your | 2.4 Program Develop 2.4.6 Program Debugging ~ Daia definition directives are used to define the program %
assembly language program in right format so that the (PDP) % g : vmabl&sandauoam.aspcjaﬁedamwmofmymm
assembler will translate it correctly to machine language. e of anilyai T o I e A b ~ The data definition directives are DB, DW, DD, DQ, DT,
~ So.youcantype e o The PDP is process, which conSen & VS, desigy ~ The exccutable file of the program o be debugged must be STRUCT and RECORD. =
2 JOur program using editor. < development lmplentﬂmon* translation, testing, d“'b“gging' created with the program debug options.
= Mﬁnnofyun‘pmgxmisczﬂdasmucpmglm mt;! 3 e of the program-
= mD(Ebasedexﬁm:m:haslT. WordStar, and Norton It is an interactive and iterative process that involves the Syllabus Topic : Assembler Directives Data definition directives
thmhmedmtypeynurmm_ = following steps-
232 : =velo) t Process (a) DB : Define Byte
e Program D .(ppa|p) 2.5 Assembler Directives and "{; et il
D (MSBTE-S-14, W-14, S-15, W-15, ' | Operaor —{ (5) DW : Define Word i
$-16, S-17, S-18 3 = (MSBTE - S-14, W-14, W-15) =
_) Swp1 —» [Source File Creation i : ' =+ (c) DD : Define Double Word 1
| Q.25.1 List any four assembier directives and explain >
: any two of them. (Ref. sec. 2.5) ={ (¢) DQ : Define Quad Word B
Step2 — l Object Code Generation l Q.252 List any four assembler directives. State the - | (e) DT: Define Ten Byte |
e functions of any two assembler directives.
machine code and generate the file called as object file with ; (Ref. sec. 2.5) > (7 STRUCT : Structure Dediaration |
s oty - Step3 — l Executable File Creation ’ Q.253 What are assembler directives? Explain any
— Some examples of assembler are TASM Borland’s Tarbo I two assembler directives. ! (o) RECORD |}
Assembler and MASM Microsoft Macto Assembler etc. T [: = j (Ref. sec. 2.5) "I) EQU Equam b J
233 Linker 3 pemt : o) P . I
9 (MsBTE-s-15, S-16, W-16, W-17) Testi — |Assembly language program supports a number of reserve -.I (@) : Origina
%1 = — - Siep5 —> r Program Testing ‘ Wf@g‘:v?m that enables you to control the way in "I 3) ALIGN - Alignment of l
;L A . of Linker.(Ref. sec. 2.3.3) 5 o which a pro, assembles and Lists. S emory addresses
= S-135.5-16. W=17 2 [arks — These words are called as 4 assembler directives)act only 5
: : I =2 EVEN : Al memory location
234 Describe Linker with respect to their function =5 [Program Debugging during the assembly of the program and generate no machine -.I ®) o)]
s ~and usages. (Ref. sec. 2.3.3) p T executable code. () LABEL
— A linker is 2 program, which combi . e 241 Development Process (PDP) — So, directives are the statement that gives direction to the -.l I
. » if requested, more | 241 Source File Creatio assembler and also called as pseudo-instructions that are no (m) DUP : Duplicate memory location 1
mm"“‘ such {wmx)hd I 4 translated in to the machine code. -.I_A I
as two or more programs and also generate | — The file containing pro; - : : o . g : :
.ex?.mucl_ IE o initialioes (i st g g’ons o o S Pﬁéﬂm in assembly language Directives are divided into various categories. Fig. 2.5.1 : Data definition 2
facilitate its subsequent loading the execution. = The source fie is created and edited using text editor and 2.5.1 Data Definition and Storage Allocation
~ Some examples of linker are TLINK Borland's Turbo Linker must have an extension ASM. Directives -| = (a) DB : Define Byte
and LINK Microsoft’s Linker etc. -
S : 2.4.2 Object Code Generation Q.25.4 Desciibe following assembler directives. : > ('_‘SBTE Laloboal AL \7',"' S8
W = The language translator is used to translate source program to () DB (Ref. sec. 2.5.1(a)) | | - Thedirective DRt isacd todet.'meabym type variable.
> 3 re-locatable object file, (i) EQU (Ref. sec. 2.5.1(h)) — It can be used to single or multiple byte variable.
(MSBTE - W-16, S-17, W-17) | _ 3, . be stored i is0
- assembler is used to translate assembly language source | - The range of values that can be s in .-.;byte is 0 to 255 for
code to re-locatable object code. : d : e unsigned numbers and —128 to +127 for signed numbers.
243 Ex 3 Q.2.5.5 Explain the following assembler directives. o
z ecutable Flle Creatj (1) ORG (2 EQU (3) DD : Genersl
on TR T e TS
o the Linke i s 10 cete a execuable (Ref. sec. 25.1) Narie_ OF Vbl DI Iniflistic ValuelSi S
3 S e. : >
(Ref.sec.234) - SEAVEERAITS | 244 Program Runr ! Q.256 Describe the functions of the following Examples _
- 5 unning directives : > NUM DB ?
= Debugger is a program allows the execution of program | — The executab] o
in si mode under e file can : 9 DD 2) DB 3 DUP ; :
in single step the control of the user, executable file on the pro be run by entering the name of ' (Ret. sec. 25.1) NAME DB VIAY
— The process of locating and correcting errors using a the keyboard, ™Mpt and by pressing ENTER key on S wiks = : et e
debugger is known as debugging. G Q.2.5.7 Expl owing assembler directives S R
— Some examples of debugger are DOS Debug command : rogram Testlng :2‘:5 (i) g‘ggﬂ) DD (iv) DQ s M - ARRA a O Eg
Borland’s turbo Debugger TD, Microsoft Debugger known as | ~ 10 result or : . 88C. 2.5, o K
2 t 5 LIST DB 100 DUP(0
Code View CV etc. for their vﬂ‘fy". mymepmmmhasmbemswd Q.2.5.8 Describe the function of following directives. : ! '(‘)"1,_'- :
:fpeqﬁ iy * MUSt satisfy the program ~ ()DD (i) DB (i) DUP (V) EQU %
T 7 A emons ocoy j (Ref. sec 2.5.1)
1 debug " (B resull, then program should be

‘ Programm:
i ' f Assembly LANguage rrogramm
@Mmﬁm (MSBTE - Sem 4 - Comp.) 25 T AlS ‘Qg _ : : e
icroj BTE - Sem 4 - Comp. 26 The Art of Asse L Prqm
= (b) DW : Define Word = . ‘Allacate eight memory locat; —t - op) oy Law
NUM s daiditens Gl forty memmo e — The general form of the structure variable definition is given | instruction MOV BAUD, AL will place the bits 2, 1, 0 of the
= (MSBTE-S§-17) TABLEDQ - 1,2,3,59 jiingateo Y. Ocations below. variable SERTAL_COM in the register AL as bits 7,6,5. : o
= directi 4 ; R % i _mem : ; 3 \ oy
3.?».:. tive DW is used to define a word type ic. 2ytes | isT DQ 10DUP(0) m’o‘;"'g’“" o — Structure_Variable.Field_Name - (h) EQU: Equate to v
B v i o Examples e => (MSBTE - S-15, $-16, W-17, S-18).
"= The range of values that can be stored in a word is 0 to 65535 | = (¢) DT : Define Ten Byte The structure of EMPLOYEE iz defibeles Seest | = The EQU directive is used to declare the symbols to which
for unsigned numbers and — 32768 to + 32767 for signed . .. 1sed to define a ten byte type variab], EMPLOYEE j STRUCT = Nl some-constant value is assigned. ;
i ' ~ " The directive DT 188 1 3 EMP_NUM DW= 2 | - Such symbols are called as macro symbols, so macro
: foon _[tcan be used to define a single or multiple 10 byte variableg EMP_NAME DB 25 DUP(0) Vo assembler will replace every occurrences of the symbol in a
N R T e ; & SRS by its value.
DWW nrialiins T be stored is 0 to 2% EMP_DE DB+ :30DUP0) o o program : 1
DWW Initialization Value(s) — The range of values mztwcf?td e ;or . 0 2. for EMP_AG:r = . (0) : . Macros are aled e o nbreden the maRbN A B RO
: el B 'Ened inteel = : : ~ The advantage of macros that the modification of the symbol
g e nimbers. EMPLOYEE ENDS value at the declaration will be reflected throughout the
el “A1lsoatatwe isibrs lo‘i:'nﬁm:: —The floating-point numbers range from 10492 o 109%. The & be'I:zﬁsnu‘;udcmx: l\]f:::ble EMPLOYEE_1, EMPLOYEE 2 etc. program. ‘
R ey ¢] e . | as fol 4
1,2,3,564 ; Allocate ten memory locations DT type variables are useful o e FOCESSOr Instructions EMPLOYEE_1 EMPLOYEE < 01, MARTINE’."COMPUTER Gmera’ fony e
)W 50 DUP(0) ; Allocate 100 memory locations, . where large numbers are used in computation. TECH." 35> ; Symbal N
= (c) DD : Define Double Word General form : EMPLOYEE_2 EMPLOYEE< p L v
Name Of Varible DT Initialization_Value(;s) The field EMP_NUM, EMP_NAME, EMP _DEPT,
=> (MSBTE - S-16, W-16, S-17, W-17) o 3 o EMP_AGE in a structure variable EMPLOYEE_1 is initialized
~ The directive DD is used to d .| Examples with the value 01, ‘MARTINE’, ‘COMPUTER TECH., and 35 S el 7
4 byte type variable. Shicis dobiciword LyPeite. NUM DT? P ATIocate Ton et respectively. The fields of the structure variable EMPLOYEE_2 7 A S L LS E
s e : e ; et are un-initialized. The field of the variable EMPLOYEE_1 canbe | &) ORG : Origina :
van('::.l;les used to define single or multiple double word |- ; 3 locations accessed as follows. : 4
BITIE mehie of valis that e e stored ina'd : TABLEDT1,2,3,5,9. - ; Allocate fifty memory EMPLOYEE_1 EMP_NUM => (MSBTE - S-16) |
2%%! for unsigned numbers and — 2’;"'3' t::bie ;;glg_lsl Ofw . : pacations EMPLOYEE_1.EMP_NAME = direct.ives 0 RG 3 "i thell Withjithe ‘
signed integer numbers. | LIST DT10DUP(O) ; Allocate Hundred memory EMPLOYEE_I.EMP_DEPT value specified in the directive. :
: : . - t 2/ EMPLOYEE.1.EMP_AGE — It helps in placing the machine code in the specified location
= The floating-point numbers range from 10 to 10, The DD s locations. S ' while translating the instructions into machine codes by the
type variables are used in the math coprocessor instructions | = (f) STRUCT : St The instruction MOV AL, EMPOYEE_I.EMP_NUM will S
: ns : Structure Declarati AL with th f EMP_NUM field . 3 ‘ :
Wwhere large numbers are used in computation. o The ditect Eation e L e e e oL i —~ This feature is useful in building device drivers and .COM
e directives STRUCT is used to declare the data type =» (g) RECORD programs whose structure is explicit as certain information

has to be located in a definite place in the program.

Which a collection of primary data types (DB, DW, DD).

The structure declaration allows the et to define a variable — The directive RECORD is used to define a bit pattern within a

byte or a word.

| which has more than one data type. S At :
: General form — Itis similar to the bit-wise access in C language.
; Allocate four memory locations i X ~ The RECORD definition helps in encoding or decoding of bit E I
i Allocate 20 memory locations i cture Name STRUCT for which some meaning is assigned. E '
i Allocate forty memory locations. S T General form : B 8§G ;
Define Quad Word et ence of DN.DW.DD directives for declaring . . Record_Name RECORD R 5 | e 5
D (MSBTE. el Field Specification_1.....Field_Specification N =S . %
s 3 (TE =8-17) 86 53 Where each field specification is of the form, Field_Name : =» () ALIGN: Alignment of memory
éb directive DQ 1s used to define a quad word type i.e. “‘I.JN_Namg ENDS - Length [= Initialization] where initialization is optional. The directive ALIGN is used to force the assembler to align -
; yte type variable. Structure variable definig - the next data item or instruction according to given value.
— It can be used to define single or multiple oo Examples I. .8
variables. B vord) Stﬂ.lcl(‘u[e declaration does not allocate bt In serial cc ication, initializations of the port parameter Ge ’om - kS
= : merely defines memory space, coded bit-wise as follows. . ALIGN Num va DG SENE
'l'zelmnge of‘values that can be stored in a double word is 0 to the structure v pmm Storage Space is allocated only when ae = - - S
2% for unsigned numbers and — 26~ ! o 4 9 - 1 3 o ariable is defineg, Bit7,6,5 : Baud Rate ; i The number must be a power of 2 such as 2, 4, 8 or 16.
. 3 =1 foi = e 3 d < : .
Hlghed iitog e r e Sg::::::o;n of a structure definition is as follows Bit4;3 : Parity 5 | Examples - . ;
= The floating-point numbers range from 10* (0 10%%, Tpe | Vriablefield d“"“'*lmnonbmcessmg structure Riyd * Stop Bitas - el | ERIANICN s 5 s
PQw:yuPe va::bles are used in the math coprocessor |-~ The StruCture variae Bit 1,0 : Word Length | = 1In above statement, the assembler advances its location
ins! ons where large numbers are used in computation, OPerator known a5 the S;:?c&‘m be accessed by using a dot("-)) Using RECORD directive, the above byte can be coded as counter to the next address that is evenly dwilihle
Itis placed pegy, ture access operator. follows. g by4. ! ‘
has to be mgzﬂ the structyre variable and the field, which 'SERIAL_.COM RECORD BAUD:3, PARITY : 2, | — If the location counter is already at the required address, then

) STOP:1, WORDLENGTH:2 it is not advanced. \

The instruction MOV AL, BAUD will place the bits 7,6, 5 of | — The assembler fills unused bytes with zeros for data and NOP
variable SERIAL_COM in the register AL as bits 2, 1, 0. The for instructions. , TRl

The Art of Assembly Language Programm,

@ Microprocessors (MSBTE - Sem 4 - Comp.) 2-7

= (k) EVEN: Align as even memory location

Describe assembler directive : EVEN, _
_ (Ref. sec. 25.1(K)) g

The directive EVEN is used to inform the assembler to

Increment the location counter to the next even memory

address.
=SS TTEitiis] counter is alread Ses
2 ly pointing to even memory
address, it should not be incremented.

The 80x86 pr?cessor' reads a word from the memory in one
bus cycles while accessing an even memory address word.
It requires two bus cycles to access a word from the odd
memory location.
The t‘.ven alignment with EVEN directives helps in accessing
aseries of consecutive memory word quickly.

The. dm.activc can be used in both code and date segments
which increment the Ilocation counter to the next even
memory location if necessary.

The.usc of EVEN in the code segment is actually replaced by
the instruction by NOP.

General form

\TA ENDS
=» (I) LABEL

The directive LABEL enables i
. you to redefine the attribut
a data variable or instrucfion label. A

General form

Type_Specifier
Examples
TEMP LABEL BYTE
NUM LABEL WORD

= (m)DUP : Duplicate memory location

- D (MSBTE - W-16, W-17)
The DUP directive can be used to

generate multiple bytes or

> words with known as well as un-initialized values.
Example :

(e

252 Program o,ganlzatlon Directives

Q. 2.5.10 Describe following assembler directives.
o ASSUME (Ref. sec. 2.5.2 (a)

@i SEGMENT (Rel. sec. 25.2 (b))

i S-15.S-18,2 Marks
Program Organization
Directives
(a) ASSUME f

..‘G ENDS : End of the segment :J
(d) END : End of the program :
-’{Te) ‘C.ODE : snmﬁmeu CODE segment @
s ('1; e :'Si;n;;lilged DATA segment du’em

(g) STACK : Simplified STACK segment '

directive
Fig. 2.5.2 : Program Organization Directives

(h) MODEL : Memory model declaration

= for segments

The 8086 programs are organized as a collection of logical
segment.

The directives used to organize the program
pro segments are
SEGMENT, END, ASSUME etc, 5

The segment can enclose program data, code or both,
(a) ASSUME

SNy 9 (MSBTE - 5-15, 5-18)
directive ASSUME informs the assembler the name of

the logical
segmef:. segment that should be used for a specified

When program i |
should point to the

Geaeral form
ASSUME

oaded the processor segment register
Tespective logical segments.

........... » 568 Reg:Seg Name

ASSUMFj 8 a assember directive,
Seg Reg is any of the se :
Seg_Name js the nam
be any valig Symbo) ¢,
Examples

ASSUME Cs:py

8ments register e CS, DS, ES, SS.

€ of an user defj
ned segment and must
Xcept reserved keywomsgm

Cod 5
ES:My_Extra € DS:My_Data, S:My_Stack,

___—-

In the above statement, ASSUME is a directive, CS is a code
segment register and symbol My_Code is an user defined
name.

=» (b) SEGMENT
=» (MSBTE - §-15, S-18)

Q. 2.5.11 Describe assembler direciive : SEGMENT.
(Ref. sec. 2.5.2(b)) e,

— The directive SEGMENT is used to indicate the beginning of
the logical segment.

The directive SEGMENT follows the name of the segment.
The directive SEGMENT and ENDS must be enclosed the
segment data, code, extra or stack of program.

General form

Segment Name SEGMENT [WORD/PUBLIC]
The use of the type specifier WORD indicates that the
segment has to be located at the next available address,
otherwise, the segment will be located at the next available
paragraph (16-byte size) which might waste up to 15 bytes of
the memory.

@D Microprocessors (MSBTE - Sem 4 - Comg.) , 2-8 The Art of Assemb! %& Mmmmlg

S My_Code END:

=» (d) END : End of the program

Q.2.5.13 Describe the ass
 (Ref. sec. 2.5:2(d)) !

The directive END is used to inform assembler the end of the

program. :

General form

¥

The optional start_address specifies the location in the code
segment where execution is to be start.
The system loader uses this address to load CS register.

(e) .CODE : Simplified CODE segment directive

This simplified directive defines the code

e

The type specifier PUBLIC indicates that the given
which have the saie name.

&

Examples
(a) ' My_Data SEGMENT
Program Data Definition Here'
My_Data ENDS
(b) My_Code SEGMENT
Program Code Here
My_Code ENDS

=) (c) ENDS : End of the segment

Q. 2.5.12 Describe the meaning of the directives : ENDS.
' (Ref. sec. 2.5.2(c))
The directive ENDS informs the assembler the end of the
segment.
The directive ENDS and SEGMENT must enclosed the
segment data or code of the program.,
General form
Segment Name ENDS

Examples
" (a) My_Data SEGMENT

FmgmmDataDeﬁnitionHem o o

All ble code must be placed in this segment.
General form

: ' .CODE [name] |
=» () .DATA : Simplified DATA segment directive

This simplified segment directive defines the data segment for
initialized near data.

All data definition and declaration must be placed in this
segment.

General form

DATAT AT T
=» (g) .STACK : Simplified STACK segment directive

This simplified segment directive define the stack segment
and default size of the stack is 1024 bytes, which you may
override.

General form

Memory model declaration for

=» (h) .MODEL :
segments
This simplified segment directive creates default segments.

& Memory models

TINY : Since MASM 6.0, used for .COM program.
SMALL : All data in one segment and all code in one
segment.

My_Data ENDS .

The Art of Assembly Languags P'°9’a’"mla :

@ & Microprocessors (MSBTE - Sem 4 - Y '
- == (MSBTE - Sem 4 - Comp.) 2-9 , = @r Microprocessors (MSBTE - Sem 4 - Comp.) 2-10 The Art of Assembly Lan
. - - MEDIUM : All OFFSE i e B L
: Dnesegmem_ dm T segmem, P ceoe in orelites -’ © FFSET informs the assembler to def — The term FAR or NEAR follows the PROC directive | — It consists of name of a macro féllowed-by
(e . - comp, ACT : . — The directive (:l of the specified variable with respect o the . indicating the type of a procedure. and macro arguments if any. i
: ¢ Data in more than one segment, but code in the displaceme it — If the term is not specified, then assembler assumes NEAR as [— The directives MACRO and ENDM
i SRSy o soLmenl. . baseof the segme iable into the reg definition, declaration or a small part of c
' oad a offset of a variable into the register the type specifier. k)
[e = LARGE : Both data and code in more than one segment, but | — Ttusually used 10 : be ref y i be substituted at the invocation of a macro.
i : 10 array may exceed 64 kb Using this offset value, @ varigble can be referenced ugipy ~ The use of a procedure type specifier heips the assembler to B
i) bl i smged addressing modes. decide whether to code RET as near return or far return. General form
g — HUGE : Both data and code in more than one se nt,a.nd index = A . S 7 3
i 3) L - The directive PROC is used with the directive ENDP to
e array may exceed 64 kbytes. General form 5
Bl ST Variable. Name Z enclose the procedure code.
Big 253 Value Returning Attribute Directives S J General form
B ' 5 _ Procedure Name ~ PROC [NEAR/FAR]
ki T Rgmﬂﬂs“ m-'bme MOV S, OFFSET ARRAY Exampie
MOV DX, OFFSET MSG ADD PROC NEAR ;
(a) LENGTH i MOVBXJOFFSETNUM® = -~y GecscsiSius s s :
=) (d)SEG:Segmentts s = SR O i :

b snz' | ;
f The directive SEG is used to determine the segment in which -
(0) OFFSET the specnﬁod data items is defined. S AN et R e LS
Jh Ceneral form ¥ ENDP

ADD, The above macro whose name is DISP can be called by |

’ (6) SEG : Segment | Se—] 4
: 7 | SEG Yarable Name 3 — The above procedare can be called by using CALL instruction writing macro name along with its argument if any in the
i (e) TYPE Examples f\f]_) ig)xsﬁ microprocessor whenever required such as CALL progr 3 it is required i.c, number oflimes._
Bk Fig. 2.5.3 : Value Returning A MOV SO MG From -above example, it is clear that the procedure will save a SRThe oo e /a0 opel niiees)
a e ng Attribute Directi 5 3 i made 1o i b
e MOVES SEGLIST great amount of effort and time by avoiding the overhead of gels expanded if a call is ot

— The difference between macros and procedures is that, a call

i ~ The task of programming can be made easier by assigning the | =» () TYPE writing the repeated pattern of code. ’
AR assembler to computer the size of the data items. - to macro will be replaced with its body during assembly time
,‘ “ { * — Itis performed using the directives LENGTH, SIZE, OFFSET =" The directive TYPE is used to determine the type of the data (b) ENDP : End of procedure : whereas the call to the procedure will be an explicit tnnlfer
‘ and TYPE and causes the assembler to substitute some ftem. o — The directive ENDP informs the: assembler the end of a of program control to the called procedure during run time. -
" ; numeric constant depending on the data item. = 2 determines the number of byte allocated to the data TYPE. procedure, — The concept of macro is illustrated below.
‘ ~ Assembler allocates one byte for DB, two byte for DW and — The directive ENDP and PROC must enclose the procedure X y LiGE 7
s = (a) LENGTH four byte for DD type variable definition. 45 code. ; 'Mscpu: DB ‘Well C
— The directive LENGTH informs the assembler about the General form - e y : . m. “‘N
number of the elements in a data items such as array. T e . Cenanlg MSG2DB ‘H
— If the amay is defined with DB, then it retums number of | TYPE Vaniable Name Procedure_Name ENDP : .| .CODE
bytes allocated to a variable. Examples Examples e
- Ifan :l“ny is d:ﬁ.:;: with DW;bl.:nen it returns the number of ADD BX, TYPE NUM FACTORIAL ENDP DISP. "SGl :
QiR o fhe ary yaciable. SUB DX, TYPE PI HEXTOASC ENDP : DISPMSG2
| 3 NN 254 Procedure 2.5.5 Macro Definition Directives e ‘
RS ENGTH Variable Neme 0 | R v ectives PO
f e p ure def i ves are us 0 ine F 1
[Examples " ¥ subroutines. It offers m&::on SRS ars used o deffel functions. The directives macro and ENDM are used in the END — e 2 %
I MOV CX, LENGTH NAME and ENDP, Programming constructs like PROC definition of the macro. For above example, it is clear that the macros will save a
MOV DX, LENGTH ARRAY grwnmoumofeffmmdﬁmebylvuidm;meovuhadof
=» (b) SIZE : Proo.;u" definition Macro definition directives witing e 150 ! of ooy ¥ 4
‘) - rectives (b) ENDM : END of MACRO
, £ The directives SIZE is same as LENGTH except that - j
1 it
; returns the number of bytes allocated to the data llﬂfn‘ mstea:l (F) PROC : Procedure) MACJ]R(?[- J

of the number of elements in it.
2t (b) ENDP - (b) ENDM : END of MACRO]
General form P : End of procedure
P s e 25 Teaia, Fig. 255 Macro defiiton direcives
MOV AX, SIZE NAME : = (@) PROC: Proceg) =) (a) MACRO
OO SIZETOTAT : = The directy _ The directive MACRO informs the assembler the beginning
: 9 SR0a of a macro. k

foﬂommmgbemm“ beginning of a procedure and

@. Aﬁ o Assamb'y Language Programming
&2 Microprocessors (MSBTE - Sem 4 - Comp.) 2-11 UL o
reference
Example For procedure procadare. nmefﬂVWAR]
. DISP MACRO MSG
i ~ PUSH AX Examples . msgbyter name:word, num:byte
S . EXTRY DISPLAYNEAR:
; AH,09H EXTRN DISPLAY:FAR
. LEA DX, MSG-
. INT 21H =» (c) PTR: Pointer
PbP DX g ;< used to indicate the type of the memo,
— The directive PTR is US Ty
; ‘TORAX acceess ie. BYTE/WORD/ DWORD. :
HESSIT ENDM _ For instance, if the assembler encounters the instruction fike

- 25.6 Data Control Directives

'l.‘he data control directives are used to declare the variable
used in communication of information between the program
modules. The data control directives are PUBLIC, EXTERN and

Data control directives

(a) PUBLIC

(c) PTR : Pointer

Fig. 2.5.6 : Data control directives

=» (a) PUBLIC

— The directive PUBLIC' informs the assembler that the
specified variable or segment can be accessed from other
program modules. .

- = Ithelps in managing the multiple program modules by sharing
the global variables or procedures.

= The variable and procedure to be shared must be declared as
PUBLIC in a module in which it physically exists.

- General form
PUBLIC rariablel, variahleZ,......... variablelN
Example
PUBLIC MSG, NAME, NUM
PUBLIC ARRAY
=» (b) EXTRN : External

The directive EXTRN informs the assembler that the data
items or label following the directive will be used in a

program module, which is defined in the other program
modules.
General form
For variable reference
varaibel namel:refernce ype,....... variable_nameN:referen
; ce_type ? 2

INC [SI), it will not be able to decide whether to code for

byte increment OF word increment. : , :
It can be solver using PTR directive with the instruction g
INC BYTE PTR [SI] for byte increment or INC WORD PTR
[SI] for word increment.

The directive PTR can be used to override the type
declaration of a variable i.e. if a variable is declared as word,

it can be accessed as a byte.

Examples
INC BYTE P1R [DI].
ADD AL, BYTE PTR NUM.
DEC WORD PTR [BX].

2.5.7 Branch Dispiacement Directives

The branch displacement directives are used to control branch

displacement and these are SHORT and LABEL.

Branch displacement
directives

{ooem |

Fig.2.5.7 : Branch displacement directives

=» (a) SHORT

Iihc ldm:ctjve SHOR_]' informs the assembler that the one byte
s Splacement is required to code to Jjump instruction.

ormally, two bytes are reserved .

o t :

the jump instruction, et e

The target must pe i

n the =
the address of the Jy B e 2t 10 +127 byesifiog

mp instruction,

Examples

JMP SHORT NEXT.

=> (b) LABEL

The directive LABEL
the location counter,

The LABEL directive myg;
data type to Which labe] js
lf the Jabe] j

ASSIgNS & name 1o the current value in

! be followed by the definition of
associated.

at.e destin.ation in the jump or call
Specified as a far or near.

@0 Microprocessors (MSBTE - Sem 4 - Comp.)

2-12

The At of Assembly Language Prggrammiﬁ

— When the label is used to reference the data item, the label

must be specified as type BYTE, WORD or DWORD.
General form
LABEL Label name : Label Type
Examples
LABEL A_REF WORD
A DW 1000 :
The label A REF can be used as reference to the
variable A. ’
NEXT NUM LABEL FAR
NEXT _NUM:

LOOP NEXT_NUM

2.5.8 File Inclusion Directive

=» (MSBTE - W-16)

Q. 2.5.14 Explain the assembler directive : INCLUDE.
(Ref. sec. 2.5.8)

W-16;1"Mark

header and directive in INCLUDE.

INCLUDE

The file inclusion directive is used to define include file

The directive INCLUDE informs the assembler to include the
statement defined in the include file.

General form

INCLUDE <file path ;peciﬁcﬁﬁoﬁ'

Example i

INCLUDE C:\TASM\MACRO.LIB
INCLUDE C:\TASM\BIN\MYPROC LIB

25.9 Target Machine Code Generation

Control Directive

The assembler will recognized only 8086 instructions by
default.

It is because the program that confirm themselves to the 8086
instruction set that can run on any IBM PC, irrespective of
the microprocessor i.e. 8086, 80186, 80286 etc.

So, special directive can be used at the beginning of a
program to inform to the assembler to generate a code for the
specific processor and these are listed below.

General form
186 -
286 -
386 -

generate machine code for 80186 pmceuor only.
generate machine code for 80286 processor only.
generate machine code for 80386pmceesor pnlx; s

486 -
586 -

2.6

generate machine code
generate machine code

ie. pentium

for 80486 gﬁéésior only.
for 80586 processor only

Difference between Assembler

Directive and Instructions

The name of the include file follows the

INCLUDE. Sr. Assembler directive
— Itis used to place all the data and frequently used macros into No. %
2 file known as header or include file. Assemble directives gives | Instruction performs
- This include file must exist in the directory specified in the direction to assembler operation specified by it
path specification otherwise, and then assembler gives an NSED
error. 2. | Assembler directives Instruction are executed
— The part of assembler which processes the include file = is does not exeeute by the processor.
known as pre-processor.
Chapter Ends...
(8]]

2o
(S

‘Instruction S
~ Microprocessor

et Of 8086

UNIT-m | &=

~ Syliabus

Machine Language Instruction format, Addressing modes. Instruction set, S .~ AR
Instructions; Logical Insiruction, Data transfer instructions, Bit manipulation Instructions, String Ope
Instructions, Program control transfer or branching Instructions, Process contiol Instructions.

'Groups of Insiructions : Arithmetic

3.1 Introduction

— In chapter 2, we have studied the art of assembly language

- programming for 8086 P
— This chapter introduces the different format of instructions,
lddmsaing mode, groups of instructions and instruction set of
8086 microprocessors. 3
— 8086 has more than 20,000 instructions.

5.

Syllabus Topic : Machine Language
Instruction Format

3.2 Instruction Format

- Amachinelanguageinmuctionfonnathaxoneormom

~ numbers of fields associated with it.

— The first field is called as operation code field or op-code
X ﬁeld.whichindicae!helypeofmeopenﬁontobeperfonned
by the CPU. 4

- ‘m:secondﬁeldilcdleduopemdﬁeldi.e.dmﬁeldon
which CPU perform the operation specified by the instruction

- mhmncﬁmuthulixgmnlfotmoflhe
instructions. i s

= mlengthbfminmucﬁonmyvaryﬁomonebymmﬁx

bytes.

~ The instruction formats are discussed below :

Instruction Format 4 |

ih

g -Dlﬂnmediate operand to register’ l

-.|71 . One byie instruction

-.[2. Register-to-register

3. Register to/from memory with no
displacement .

E-bb Register toffrom memory with displacement I

6. Immediate operand to mamory with
16-bit displacement

Fig.32.1 : Instruction Format J

One-byte instruction

This format is only one byte long and may have implicit
data or register operands.

'I'he.least significant 3 bits of the op-code are used 10
specify the register operand, if any.

» all the 8 bits form ode and the
Operands are implieq i]

Register-to-register

Register 10 register ; g ; .
s 0f 2 bytes I:lg.er '0struction, the format of instruction

The i
- o by!e of code indicates operation code of ”‘

register operang Bt of the instruction code indicates 2
; md RM field as shown below.

=» 4. Register to/from memory with displacement

@. Microprocessors (MSBTE - Sem 4 - Comp.) 3-2
—_——

— The R/M field indicate another operand which may be
register or memory location.
1* byte
D, Dg Ds Dy D; Dy Dy Do
 OpCode

D; Ds Ds DJ» D, — 2
e
3. Register to/from memory with no dispiacement
— In this type of instruction, the format of instruction is of -
2 bytes long.
— The first byte is same as in the register-to-register
format but second byte contains MOD field as shown in

below. : .
— The MODE, R/M, REG and the W field are given from
Table 3.2.1.

1% byte
D; Dg Ds Dy Dy D; Dy Do
Op-Code . iwl
2""byu
D, Ds Ds Dy D; D, D Do
I . MOD REG l RM J

This type of instruction format includes one or two additional
bytes for displacement along with two bytes’ format of
register to/from memory as shown as follows.

1* byte

D; Ds Ds Dy Dy D, Dy Dg

[; Op-Code lwl
2" byte

D; Dg D¢ Dy Dy D, Dy Dy

[mMop [REG | M |
3" byte

D; Ds Ds D, Dy D, D, Do
4" byte

D, Ds Ds D, Dy D, Dy Dy

=> 5. Immediate operand to register

— In this type, the instruction format content the first bytes as
well as the 3-bits from the second byte, which are used for

— The length of this type of instruction for
long. v
— The first two consecutive bytes contain the infor
CODE, MODE and R/M fields. :
— . The last four bytes contain two bytes of ¢
bytes of data shown as follows. i
1% byte
D; Ds Ds Dy Ds

REGﬁcld.ifilisaregist:r—(o’-mp’sterfumaL.musedforop-

Instruction Set of 8086 Microprocessq,

@ Microprocessors (MSBTE - Sem 4 - Comp.) -
A Table 322 .

The op-code of instruction is usunlly appearing in the first nds 8/16 bit Regiptey
byte, but in some instructi a ination is in the first || gperands Mom ooits | With 16-bits operands
byte and some other instructions may have their 3-bits of op-code vithout | With et
in the second byte. The op-code have single bit indicators and their | offset | Offest 5 19
definitions and significances are given below. 0D 00 W
— W-bit : Indicates the width of operands i.c. 8-bits or 16-bits | [RM L W=0 W=1

data. If W = 0, the operand is of 8-bits and if W = 1, the o™ =2 Si

operand is of 16-bits. . o @)+ () | BR+ED AL AX

: : 000 + D16
— D-bit : Indicates one of the operand is register in case of two, Lo R B:(. o) 8
operand instructions. If D bit =0, the register specified by the o @)+ |)016 cL cx

REG field is source operand else it is 2 destination operand. IS | S, Do * = —=
— S-bit: Itis sign extension bit and is used with W-bit to show o0 | @P)+sh (8P) +(S1) (BP)[;(G) DL DX

the type of operation i.e. either byte or word operation. s B:‘ ol |
— V-bit : Used in case of shift and rotates instructions. If shift o1 | @)+on ©P)+(0) | ();‘8) BL BX
count is 1, this bit is set to 0 and if CL contains the shift count =8 * =

more than 1, this bit s set to 1. 100) | syeDs | (SheDI6 L M

: BP
— Z-bit : Used by REP instruction to control the looping 101 (0) (D= (o) + D16 o
gperaion. 0 BP) + D16 DH Sl
BP) + D8 +
B B o ok e iffieentre gistees i the opcode byees || 1° | Ot | €7 (
are assign with binary codes given in Table 3.2.1. o %) (BX)+D8 (BX) + D16 BH DI
Table 3.2.1
‘W-bit| Register |Registers|S: register | S t Note: D8 and D16 represent 8 and 16 bit displacements
ok address bits | @16 bit)| (2 bit) | register respectively.
(36 bit) — When a data is referred as an operand, then DS is the default
0 000 AL 00 ES data segment register, CS is the default code segment for
storing program codes, SS is the default stack segment
0 001 CL 01 cS register and ES is the default segment register for the
0 010 DL 10 SS destination data storage.
0 - 011 BL 11 DS
. o AH Syllabus Topic : Addressing Modes of 8086
0 101 CH .
5 T = 3.3 Addressing Modes of 8086
0 111 BH = (MSBTE - 5-14, W-14, S-15, W-15,
o 000 AX S-16, W-16, S-17, W-17)

. o0l X Q.3.3.1 State example of immediate addressing mode.

1 010 DX 8 (Ref. sec. 3.3) S-14, S=162:Marks |

- - =< -3.3.2 5;1"9 mﬁ&ng mode. List any two addressing

- e o mi
1 100 sP (Ref. e
’ ef. sec. 3.3) B W-14.72 Marks

1 101 BP 0.5.3.3 Describe various addressing modes of 8086 with:

5 110 SI OFY:G suitable example each, 2

A (T = o, sy [s515: Marks |

— First the addressing mode of the instruction must be decided, o ;';:‘65 and explain any four addressing modes Of,
to find out the MOD and RM fields of a paricular microprocessor with example.
instruction. The add g mode depends on the operand (Ref. sec. 3, 3)
and states how the effective address may be calculated for 0.335 Explain following addressing modes of 8086 wlﬂ"—
locating the operand, if it store in memory. The different example 'mmeduaae i g modes O
addressing modes are listed in Table 3.2.2. (Ref s 53) addressing mode
— The R/M and addressing mode row content indicates the Ry | |@- 3.3.6 D)
; 5 e efine
field and addressing mode specifies the MOD field. giv':lmediate and direct addressing mode- g
' one example of each, i
(Ref.
sec. 3.3)-

[@. Microprocessors (MSBTE - Sem 4 - Comp.) 3-4

V] 3 {

Q.3.3.7 List any two addressing modes of 8086 with
example. (Ref. sec. 3.3)

- Addressing modes is used to locate data or operands in
memory, register or I/O.

—~ Any instruction of 8086 can be used in one or more
addressing modes but some instruction cannot be used in any
of the add g modes depending on the data type used in
the instruction and the memory-addressing mode.

— Hence, the addressing modes of any instruction specifies the
type of operands and the way they are accessed for executing
an instruction. According to the flow of instruction execution,
the instructions can be categorized as : Sequential control flow |
instructions and Control transfer instructions.

— Sequential control flow instructions are the instructions which
transfer the control to the next instruction appearing
immediately after it in the program after execution, e.g. the
arithmetic, logical, data transfer and procéss control
instructions.

— The control transfer instructions transfer the control to some
predefined address of the memory which may or may not be
specified in the instruction, after their execution. For example,
INT, CALL, JMP, RET etc.

@ Addressing modes of 8086

Addressing Modes of 8086

nlelmmediate addressing mode

—b{ 2. Direct addressing mode

ﬁeglster addressing mode

mgl 4. Reqister indirect addressmg ‘mode

—;{ 5. Indexed addressmg mode

-o!ﬁegnster relative addressmg mode

-.l 7. Base indexed addressmg mode

-b| 8. Relative base indexed addresslng mode

L;I 9. Imphcn or umphed addresslng mode

Flg. 33.1: Addressmg Mods ol' 8086

=) 1. Immediate addressing mode

— In this mode, the immediate data is the part of the instruction
and appear in the form of successive byte or bytes after the
op-code bytes.

— So immediate data may be 8 bit [byte] or 16 bit [word] in
length.

— Immediate data can be accessed quickly as they are available
in an instruction queue hence no extra bus cycle is required to
read data.

Examples . ¢ i

Irstruction Set of 8086 Microprocessor.

MOV AL, 46H AL is loaded with 8-bit immediate

_ data 46H. ' it
BX is loaded with 16-bit immediate
data 1234H. :

MOV BX, 1234H

2. Direct addressing mode

In this mode, a 16-bits memory address (offset) of opemnd is
directly specified in the instruction as a part of it. Y
The offset of displacement may be either 8 bit or 16 bit which
follows the instruction op-code.

So, me'physical address is calculated by adding this offset to
the base segment registers i.e. CS, DS, ES, SS.

Examples

AL will be loaded with the content
of memory location whose offset is
3000H from base address.

AX will be ANDed with the content
of memory location whose offset is
8000H from the base.

In above examples, DS is the default base address register.

Suppose, data is stored in EXTRA segment, then data can be

loaded in register by specifying address using following way.
MOV AX, ES:[4000H]

3. Register addressing mode

In this mode, the data is stored in a registers and it is referred
using the particular register i.e. all regmer except IP may be
used in this mode.

Register may be source operand:

MOV AL, [3000H]

AND AX, [8000H]

destinati perand or both.
The instruction of this addxessmg mode are compact and
faster in execution as all registers are reside in chip and’no
external bus is required to read data.

Registers may be 8 bit or 16 bit.

Examples

MOV AX, CX
AND AL, BL

Copies the content of CX reg. to AX reg.
ANDing the content of BL with AL, store
result in AL.

Rotate the contents of AL CL times. 3
4. Register indirect addressing mode

In this mode, the address of the memory location which
contains data or operand is available in an indirect way, usmg
offset register such as BX,, SI, DI register.

The default segment reglster is either DS or ES dependmg the

‘instruction used.

If BP is used, then SS is the default segment mgisler.

ROR AL,CL -

Examples

MOV AX, [BX] Copies the contents of memory lo

whose offset is in BX Register.

s nstruct
@. Microprocessors (MSBTE - Sem 4 - Comp.) 35 - 4 S1 or DI register in the default Segmep
SUB [SI], AL Subtract the content of AL from the register BX or BP 1
memory location whoseoffset is in SI DS and ES.
register and store result in same ! I
A memory location. Exaore Copies word from mem,
MOV AX, 60[BX]IST ion whose offset is cal
=} 5. Indexed addressing modes location cul

— In this mode, the offset of the operand is stored in any
. one of the index registers i.e. SI and DI

~ DS and ES are the default segments for index register S
and DI respectively depending on the instruction used.
= This mode allows the use of a signed displacement.

Examples
MOV BL, [S1]

’ ADD AX, [DI+8]

= 6. ﬁegiﬂer relative addressing mode

- In this mode, the data is available at an effective address
formed by adding 8-bits or 16-bits displacement with content
of any one of the registers such as BX, BP, SI and DI in the

default DS and ES segment.
Examples
MOV AX, 50[BX] Copies the word from memory
: location whose offset will be
calculated by adding the 50 with the
content of BX register.
ADD AX, S000[BP] Copies the word from memory
location . whose offset ~ will be

=> 7. Baseindexed addressing mode

— In this mode, the effective address of data is calculated by
adding the content of a base register BX or BP to the content
of an index register SI or DI with default segment DS or ES,

- Examples

> 8. Relative base indexed addressing mode

In this mode, the offset add:
the 8-bits or 16-bits displacement with the sum of base

MOV AX, [BX][ST]

ADD AL, [BX][DI]

Copies the byte from memory
location whose offset is in index
register SI to AL.
Copies the word from memory
location whose offset wili be
calculated by adding 8 with the
content of DI register.

calculated by adding 5000H to the
content of BP register.

Copies the word from memory :
location whose offset is calculated by
adding the content of BX with the

by adding the 60H with g,
contents of BX and Sy
[60+BX+S1]

ie,

= 9. Implicit or Implied addressing mode

4 5 is mode have no operands. In thj
_ Instructions using this u.1 :
instruction itseif will specify the data to be operated by the

instruction.
Examples
CLC This clears carry flag to zero.
DAA Perform operation on AL register

Example 3.3.1 EEIRANELS

Writa appropriate instructions - o perform
oparations:

(@) Initialize stack at 42000H

(b) Rotate register BX right 4 times

Solution :

following

(a) Initialize stack at 42000H
MOV AX, 4000H
MOV SS, AX
MOV SP, 2000H

OR

MOV AX, 4200H

MOV SS, AX

MOV SP, 0000H

(b) Rotate register BX right 4 times

. Movcr, 4

ROR BX, CL

Example 332

What will be the contert : e
oloving lnes of o+ % "°0ster after execution of

e,
MOV AL, 10

contents of SL MOVDL,20 o
i ‘MULDL '
Copies the byte from memory i
location whose offset is calculated by | SOlution :
. adding the content of BX with the | -
contents of DI. nALL P

of data is calcul

d by adding

10 s considcmd?:z inftmctj()ns loads 0AH in AL register 8
of number, ccimal number as i is writen at the e0d

- Mov DL, 29

: This instryc
10is considereg ::-smn"“s loads 14H in DL register 8

as
Of number, mal bumber as H i5 written at the end

on Set of 8086 Microproees%r |

3-6

@ Microprocessors (MSBTE - Sem 4 - Comp.)

— MUL DL : This instruction store result 00C8H i_n AX register
which is nothing but 200 in decimal.

Example 3.3.3

Identify the addressing mode of the following instructions.

(i) MUL AL, BL (i) MOV AX, BX

(i) MOV BX, [SI]' (iv) MOV DX, 0040H - -
Solution :

(i) MUL AL, BL ; Register addressing mode
(ii) MOV AX, BX ; Register addressing mode
(iii) MOV BX, [SI] ; Indexed addressing mode
(iv) MOV DX, 0040H ; Immediate addressing mode

Example 3.3.4 BN ECS :
What will be the contents of AL, BL, AX, DX register after the
execution of all 4 lines. ;

MOV AL, 03H

MOV BL, 03H

SUB AL, BL

MUL AL, 08H 3

Also write which flags will be affected?

Solution :

(1) - MOV AL, 03H instruction loads 03H in AL register.

(2) MOV BL, 03F instruction loads 03H in BL register.

(3) SUB AL, BL instruction subtract BL from AL, as bers in

MOV CX, count -
MOV SLoffset str_s

UP : MOVSB 'Lr‘
T00PUEL. 5 8

Example 3.3.5 FXEREES
'Idén!iiy éwréssing'ﬁrédes n
() MOVAX,2050H
(i) MOV AL, DSiSl] (i

Solution :

; Immediate addressing mode

(i) MOV AX, zOSOi-{

(i) STC ; Implicit addressing mode

(iti) MOV AL, DS:[ST] ; Indirect/indexed addmssmgmode
(iv) INC BX ; Register addressing mode 7

AL and BL are same so result will be 0 in AL and ZF will set.

(4) MUL AL, 08H instruction should be written as MUL O8H
and this instruction does not execute because immediate
addressing mode for this instruction is not allowed i.e. 08H
cannot be used.

Example 3.3.5 R GRS

Write asserﬁbly language instructions to perform loilowlng
operations. ARG

(i) Move contains of memory location pointed by DI into
. BX register i W

(i) ~ Copy a string from one memory location to another
using string manipulation instruction.

Solution :

(i) Movec ins of y location pointed by DI into BX
register
MOV BX, [DI) _

(i) Copy a string from one memory location to another using
string manipulation instruction. 7 i

o

Example 3.3.7 ,.
What will be content of reg
instructions. *
MOV BX, 050H
MOV CL, 05H
SHL BX, CL
Solution :

Out{ Dis [Dya | Dy | Diz | Dy | Dio | Do | Da | D7 | D | Ds | Dy

nstruction Set of 8086 Microprog,

@ Microprocessors (MSBTE - 2 : 3-7 : ° : e,
Example 35 = Exam |e3312 . Microprocessors (MSBTE - Sem 4 - Comp.) 38 Instruction Set of 8086 Microprocessor
Example 3.3.8 EEERNTETS ; A ’ ' ing instruct; b=
G pe ! : el dentity he addressing modes for the following |nstruq;°n‘yf_ -2 1. d rotate instructions group
antify the addressing | d in followi ions: doney == ; in
F e ng f"‘Ode used in following Instructions 0 MOV.CLs a4 H Instruction Set of 8086 : T group is used 10 perform i
gt MOV DX (e MOY A, b1 72h] (i) MOV BX, [#172Hl 5| : shifting or rotation in éither direction with or without a count
.kc) : ADDAX sn : (d) ADD AX, [SI][BX][04] (i) MdV DS, AX 28 —b{ 1. Data transfer / Copy instructions l‘ in CX.
: v » i i : : o8 - - —
Solution : 2 () MOVAX, [51+BX+04] C "[mi <» 8. Stringinstructions group
. povDS. :Regi i e n: ; : = — The instructions of this group are used to perform various
;:; e A; /:f .Rc.agnsteraddrf:SSlng mode ?0“?:0 e ; Immediate addressing moqe —DFB Branch instructions] qiring. manipulation operations such as load, move, scan,
e Seslande (l) MOV BX, [-4”2 H] ol mdieasing mode ctions l compare, store etc.
(c) ADD AX, [ST} - Indirect or indexed addressing Zu)) e - register addressing mode ..{Eop instruction:
iii) i
mode :] - Base Index with 8 bit > 2 - :] &
OV AX, [SI+BX +04] 5: Machine control instructions _ Syllabus Topic : Data Transfer Instruction
(d) ADD AX[ST[BX][04] : Relative base index addressing (G20 displacement -.{7 ach ‘ l
e ., . —bl 6. Flag manipulation instructions
mh — mode Example 3313 m g } 3.4.1 Data Copy/ Transfer Instructions
ldenhfyth Edd s 3 Mark B : Analyze the content of AL register and status of carry and -P‘T Shift and rotate instructions l(3 (MSBTE - §-15, W-15, 516, W-16,
| e € addressing modes in following instructions auxiliary camry flag after the execution of f°“0wing‘ —— e
(@) MULAL,BL (6) MOV AX 2100H : instructions. B 8. String instructions l e ‘.-.,. gl
(©) MOVALDS:(S (4 MOVAX,BX MOV AL, 99H ADD AL, 01H DAA Fig. 3.4.1 : Instruction St of 8086 Q.342 Differentife between instructions : MOV and X1 |
: - e 7 | SN |
Solution : Solution : Sl B o o (Ref. sec. 3.4 ! TERESEMAD
@ MULALBL :Regi - : The 8086 instructions are grouped into following main OPSS. | | 543 Explain the following instruction of 8086 : XLAT
s) : Register Addressing Mode If AL = 99 BCD and add AL with 01 BCD =) 1. Data transfer instructions group (Ref. sec. 3.4.1) m g i

(b) MOV AX, 2100H : Immediate Addressing mod 5 : 3t TR
(c) MOVAL, DS:[SI] : Indexed or Indirec * ? [ADDAL, 011 The instructions of this group are used to transfer data from | |@. 3.4.4 Explain the functions of following instruction with
bty Ax B)~(' or A t Addressing mode 1001 1001 = AL =99BCD source to destination where source may be register, memory one example : (1) XLAT ()LEA : ‘:
: Register Addressing Mode + 00000001 = BL=01BCD Jocation or immediate data and destination may be register or (Ref. sec. 3.4.1) ; W-1 6.2 Marks
Example 3.3.10 ERGERETS 1001 1010 memory location. All the instruction which performs the R 3 R S e
S 10 = AL=9A Hand 0.3.45 With suitable example expiain following |

store, move, load, exchange, input and output instructions 5

{dentify the addressi i i . iafotowing
s ;12” ng mode of following instruchons.. CF = 0, AF=0 e S instruction XCHG. (Ref. sec. S'Q-T)M:
(8 i : : i
2l DlV[BL i (f') ADD AX, 4712H Now, in above example after addition, Carry and Auxiliary = 2. Arithmetic and logical instructions group Q.3.4.6 Explain the following instruction of

AW (iv) . MOV AX.[BX + SI] carry flags are reset but lower and higher nibble is greater than or @ XLAT (i) XCHG

The instructions of this group are used to perform arithmetic

and logical, increment, decrement, compare and scan (Ref. sec. 3.4.1) m

operation. Q.3.4.7 With example, describe X‘I.A;rﬂin Y

Solution :
(i) INC [4712H]

equal to 9. So DAA instruction adds 6 to higher as well as lower
nibble of AL register to get correct BCD result i.e. 100 BCD of

: Direct addressing mode

(u) ADDER GO : Immediate addressing mode which 00 in AL and Cy = 1 as given below. =» 3. Branch instructions group (Ref. sec. 3.4.1)
(iii) DIV BL : Register Addressing mode After the execution of DAA instruction, the resul is .
(iv) MOV AX [BX + SI] Base Indexed Addressi . The instructions of this group are used to transfer the program
SHIg dode £zl 10011010 = AL= 9AHAF=1 execution control to the address specified in the instruction < MOV destination, source

Example 3.3.11 EREACIIE
ple : A:Marks 201100110 = 66H such as call, jump and return instructions. — This instruction is used transfers data from source i.e.

le

Identify the addressing mode of following instructions. 0000 0000 = AL =00 in BCD form o o instrCtions Eron register/memory location / immediate data to destination i.e.

(i) MOV AX, 2034H : ; k] d £ grovp another register/memory location.

i) MOV AL, [6000H] = 100in BCD <o ADS. If these instructions use REP instruction prefix with CX used | _ The source of an instruction can be any one of the segment
Vg — as count register, they can be used to perform unconditional register or other general or special purpose register or a

(i) ADDAL,CL
(iv) MOV AX, 50H [BX] [SI]
Solution :

(i) MOV AX, 2034H : Immediate addressing mode

(ii) MOV AL, [6000H] : Direct addressing mode

(iii) ADD AL, CL : Register addressing mode

(iv) MOV AX, 50H [BX] [SI] : Relative base index addressing
mode

Syllabus Topic : Instruction Set

34 Instruction Set of 8086

Q.3.4.1 Select instructions fo,
i

ii.

th I each of the following :
% .te Tegister B, right 4 times
luliply AL by o
;lgned division of B and AL
: 0Ve 5000H to register DS.

=» 5. Process (Machine) control instructions group

=) 6. Bit(Flag) manipulation instructions group

and conditional loops. The LOOP, a LOOPNZ and LOOPZ '

instruction belongs to this category.

The instructions of this group controls the status of machine.
NOP, HLT, WAIT and LOCK instructions are the example of
this type.

The instructions of this group, which directly affect the flag

register, such as CLD, STD, CLI, STI etc.

memory location and destination of an instruction can be a
register or memory location.

— But, in immediate addressing mode, segment legiﬁlcr should

not be a destination register means direct loading of the
istérs with i diate data is not allowed.

-4 -

— To load seg gisters with i diate data, we must have
to foad any g |-purpose register with the i diate data
and then it should be moved to that any segment register.

Operation

Destination « Source i K

ion Set of 8086 Microp,
= Ins(rucﬂoﬂ rocs%r
& g 9 !
@ Microprocessors (MSBTE - Sem 4 - Comp.) 3- allowed must push a word
Examples PUSH AL ement SP by 2, copy word from memory
MOV BX, 3456H Immediate addressing’ mode - where | PUSHISOOOH] 0 P, 1o stack '-°'k°°“;e'5‘:x;’f 5000y
3456H is immediate data copied to BX i addresskof stack an¢ 3001H 1o/
register by this instruction. address of stack.
MOV AL, [3000H] Direct addressing mode where the data
from memory location 3000H is
copied to AL register by this | @ POP destination e locati
instruction.) word from stack locations pojp
b stores 3 R ted
MOV AX, BX Register addressing mode where the | = ms:;wc;:;w 2 destination specified in the instructig,
conmm§ £ ,"‘gis'” ‘S Copetid e ‘po‘ n must be a 16-bit general-purpose régis‘er
. AX register by this instruction. — The destinalio 16-bit memory location. g
MOV AL, [ST} Indirect addressing mode where the segment register, 0 - .
data from memory location addressed | _ pe stack pointer is aulomf&all)’ lnFl’e y 2 dunng the
by SI register by this instruction. execution ofthis instruction .to point the l}ext word op s
MOV AH, 50H[BX] 5:5: m:st:lrs nlelan'vc addresso l—s{il']g m stack and then the word is copied to the specified destinatiop,
re the displacement is
to BX register to get effective address | Operation
l‘mr.umwtl:ictl;li data is copied to AH LSB of destination < SS:[SP]-
register by this instruction. G SS:[SP+1]. -
MOV AL, [BX][ST] Base index addressing mode where the M8 OSf:BS ;nmon g
S effective address is calculated by SECobsS
addm" g the contents of BX and SI | Examples
:gfsm. Sadaata i) copled oA 0P DX. Copy a word from top of stack to DX, SP = gp
Relarive Libase Nindesed it + 2 ie. content of [SP] to DL register anq

" MOV AL, SOH[BX][DI)

e PUSH source

— This instruction is used o store word from source on to the

stack locations.

— Stack pointer is decremented and then stores 2 word from
source to the location in the stack segment where the stack

pointer points.

— The source of the word must be a 16-bit general-purpose
register, a segment register, or 16-bit memory location.

- Afterd

mode where the effective address is
computed by adding the displacement
50H to the sum of the content of BX
and DI registers, and data is copied to
AL register.

address.
Operation
SP <SP -2
SS:[SP] « MSB of source
SS:[SP - 1] « LSB of source
Examples
PUSH BX Decrement SP by 2, copy BX to stack ie
SEm = e
stack. i Nk
PUSH DS

ing the stack add;
to the higher address and the lower byte copies to the lower

D_ecremcnt SP by 2, copy DS to stack e
higher byte of DS register to higher addre of
stack and lower byte of DS register to Jow,

address of stack. o

the higher byte copies

content of [SP+1] to DH register.

POP DS Copy a word from top of the stack to D§
register, SP= SP +2.
POP [8000] Copy a word from top of stack to memory

locations 8000H and 8001H.

@ XCHG destination, source

contents of another register or memory location.

The instruction cannot directly exchange the contents of two
memory locations,

A memory location-can be specified as the source or as the

destination by any of 24 ; . :
7 add
Table 322, ressing modes given in

The source and destination

must both be word or they must
both be byte. The segment e

register cannot be used in this

1nstruction.
0l’.el'ation performed
Destination ., SO
Examples
XCHG AX, Bx
FXChange the word in AX with word
XCHGBL, R
E’l‘:"‘"ge the byte in BL with byte it
XCHG AX, [7000“1 "

Exchange the word in AX will
Memory e, AH with the content of
i H memory Jocation and AL Wit
° content of 700|H memory

locatiop,

This instruction exchanges the contents of a register with the

@. Microprobessors (MSBTE - Sem 4 - Comp.)

XCHG AL, NUM[BX]

@

Operation

Examples

In fixed port type

IN AL, 80H Input a byte from port whose address
is 80H.

IN AX, 80H Input a word from port whose address
is 80H.

In variable pori type

MOV DX, 8000H Initialize DX to point port with port
address.

IN AL, DX Input a byte from 8-bit port whose
address is in DX to AL.

IN AX, DX Input a word from 16-bit port whose

@ OUT port, accumuiator

Operation

Examples

In fixed port type

OUT 80H, AL Copy the contents of AL to port 80H.
OUT 80H, AX Copy the contents of AX to port 80H.

Y

3-10°

Instruction Set of 8086 Microp rooem .

Exchange the AL with byte in memory
at EA = NUM[BX].

iN accumuiator, port

The IN instruction copies data from a port to destination
which may be AL or AX i.e. accumulator.

The address of the port can be specified in the instruction
directly or indirectly.

For the fixed port type, the 8-bit address of a port is specified
directly in the instruction.

For variable port type the 16-bit address of a port is specified
in DX register only.

So DX register must always be loaded with the 16-bits port
address before the IN instruction.

AL + [port] for byte.
AL « [port] and AH « [port+1] for'word

address is in DX to AX.

The OUT instruction copies a byte from AL or a word from
AX to the specified port.

The address of the port can be specified in the instruction
directly or indirectly.

For the fixed port type, the 8-bit address of a port is specified
directly in the instruction. ;

For variable port type the 16-bit address of a port is specified
in DX register only.

So DX register must always be loaded with the
16-bits port address before the OUT instruction.

[port] «— AL for byte.
[port] < AL and [port+1] « AH for word.

@

In variable port fype
MOV DX, 6000H

OUT DX, AL Copy the contents of AL to port.
OUT DX, AX Copy the contents of AX to port.

Initialize DX with 16-bit port address.

XLAT

The XLAT instruction replaces a byte in the AL register with
a byte from a lookup table in memory.

Before the execution of the XLAT instruction the lookup table
containing the values for the new code must be put in memory
and the offset of the ing address of the lookup table must
be loaded in BX.

To point to desired byte in the lookup table the XLAT
instruction adds the byte in AL to the offset of the start of the
table in BX.
Itmencopiesmebﬁcfromtheaddresspoinwdtoby
[BX+AL] back into AL. XL AT changes no flags.

Operation
AL « DS:[BX+AL]
Example
DATA o
TABLE DB ‘0123456789ABCDEF’
CODE DB 11
.CODE

Point BX to the start of
lookup table in DS

MOV BX, offset TABLE

MOV AL, CODE
XLAT Replace code in AL with
code from lookup table. The
content of AL will be 0BH

@ LEA 16-bit register, source

This instruction determines the offset of the variable or
memory location names as the source and loads this offset in
the specified 16-bits register.

Operation ’
16 bit register « effective address

Examples ; L .

LEA BX, ARRAY Load BX with the offset of variable
ARRAY. '

LEA SI, LIST Load SI with the offset of -variable
LIST.

LEA CX, [BX][DI] Load CX with effective address by

adding contents of BX and DI.

’

rution Set of 8086 Microproge,
4

Inst
. 3-1
I&2| Microprocessors (MSBTE - Sem 4 - Comp.) ic : Arithmetic I"Struct;?\
@ LDS/LES 16-bit register, memory address of first Syllabus Topic oo
- 3.4.2 Arithmetic Instructions

— These instructions copy a word from two consecutive memory
locations into the register specified in the instruction.

— It then copies a word from next two consecutive Mmemory
location into the DS register.

Operation
For LDS instruction
16 bit register «— [memory address]
DS < [memory address + 2]
For LES instruction
16 bit register «— [memory address]
ES « [memory address + 2]
Examples

LDS BX, [1234H] Copy the contents of memory location

1234H in BL, contents of 1235H to BH
and the contents of 1236H and 1237H in

DS register.

LES BX, [1234H] Copy the contents of memory location

3 1234H in BL, contents of 1235H to BH

and the contents of 1236H and 1237H in
ES register.

@ LAHF

= Dlis instruction stores lower byte of flag register of 8086 to

the AH register.
Example : LAHF
@ SAHF

— This instruction copies the content of AH register which is
usedtosetormsettheﬂaginmelowerbyteoftheﬂag
register of 8086.

Example : SAHF
< PUSHF

— This instruction is used to store flag register on to stack.
= The stack pointer is decremented by two and sto

' point res the word
in the flag register to the memory locations pointed by the
stack register.

Example : PUSHF

< POPF

This instruction is used to store a word from the me
locations at the top of stack to the flag register and j;
pointer by two. S

Example : POPF

E (MSBTE -S-14, W-14, S-15, W5
§-16, W-16, W-17, S 0;

wing instructions (2 poi
are the following 1 o]

i Aczr';nd DAA. (Ref. sec. 3.4.2)
thmetic instructions with the:
Write any two ar ' .
Q.3.4.9 functions. Give the syntax wnh one exampg
each. (Ref. sec. 3.4.2) "’W'1’4"2'Marks
Q.3.4.10 Explain the instruction of 8086 micropchsso'

: with their syntax : ADD.

Q.3.4.12 Explain the following instruction of 8086 : DAA

(Ref. sec. 3.4.2) 5, 2 Marks
Q.3.4.13 Explain DAA instruction with suitable example,
(Ref. sec. 3.4.2) 17,4 Marks

Q. 3.4.14 Explain the following instruction of 8086 with
suitable example : AAA.
(Ref. sec. 3.4.2)

@.3.4.15 With - suitable example explain following
: instructions,
() - DAA (i) ADC

(iii) MUL (Ref. sec. 3.4.2))
Q.3.4.16 Explain following insfructions : INC
(Ref. sect. 3.4.2) :
0.34.17 Explain with suitable example the instruclion

given below : (i) DAA (i) AAM
'S:18, 4. Marks

(Ref. sec, 34.2) ;
addiﬁztes:u I)mstnfctions perform the arithmetic operations, like
traction, multiplication and division along with the
mal adjust instructions.

respective ASCI] and deci

@
ADD/ADC destination, source
= The ADD ingtryi
ction adds 3 p w0
:;‘:ber from some destinatiop, umber from somie source
N ADC instrycgg é
= The source vhon adds the carry flag into the result.
Memory locati:i: a immediate number, a register, O 2
BIVeN in Tabje 322, specified by any 24 addressing mo%*
= The destinagioy .
Specified by a:; O:dy b a register or 4 memory locati®
" The source and d: ?f 24 addressing modes in Table 3.2
canj Stination and
L Memory locaﬁ::sl be of the same tyPe
Nation gp, s
Flag agy, uid

not be ap im 5
Mediate number.
AF,

ected : OF, cp

" Instruction Set of 8086 Microprocessor

Fél’ Microprocessors (MSBTE - Sem 4 - Comp.) 312 ' = —=
= SBB AX, 1234H Immediate addressing mode :;"1“26;140; m
Operation subtracts the immediate num
Destination < destination 4 source for ADD. barrow from AX and stores result in AX.
Destination « destination + source + CF for ADC. SBB AX, BX Regist idressing mode instr that
Examples : subtracts the contents of BX and barrow from
ADD AL, 74H Immediate addressing mode instruction that AX and stores result in AX.

adds the immediate number 74H to AL and

stores result in AL. @ |NC destination
ADD AX, BX Register addressing mode instruction that

ADD AL,[6000H]

ADD AL, [SI]

ADC AX, 1234H

ADC AX, BX

< SUB / SBB destination, source

Flag affected : OF, CF, PF, AF, SF, and ZF.
Operation

Destination « destination - source for SUB.

Destination < destination - source — CF for SBB.

Examples

SUB AL, 74H Immediate addressing mode instruction that
subtracts the immediate number 74H from
AL and stores result in AL.

SUB AX, BX Register addressing mode instruction that
subtracts the contents of BX from AX and
stores result in AX.

SUB AL, [6000H] Direct addressing mode instruction that
subtracts the contents of memory location
6000H from AL, stores resuit in AL.

SUB AL, [SI] Register indirect addressing mode instruction

adds the contents of BX with AX and stores
result in AX.

Direct addressing mode instruction that adds
the contents of memory location 6000H with
AL, stores result in AL.

Register indirect addressing mode instrucu:on
that adds the contents of memory location
pointed by SI index register with AL and
store result in AL.

Immediate addressing mode instruction that
adds the immediate number 1234H to AX
with carry and stores result in AL.

Register addressing mode instruction that
adds the contents of BX to AX with carry
and stores result in AX.

The SUB instruction is used to subtract the data in source
from the data in destination and the stores result in
destination. .

The SBB instruction is used to subtract the source operand
and the barrow [CF], which may reflect from the result of the
previous calculations, from the destination operand, and the
result, is stored in destination operand.

Source must be a register or memory location or immediate
data and the destination must be a register or a memory
location.

The destination operands should not be an immediate data and
the source and destination both should not be memory
operands.

that subtracts the contents of memory
location poinied by ST index register from AL
and store resultin AL. *

This instruction adds 1 to the indicated destination.

The destination can be a register or memory location specified
by any one of 24 ways given in Table 3.2.2.

Immediate data cannot be an operand of this instruction

Flag affected : OF, PF, AF, SF, ZF.

Operation

Destination < destination + 1

Examples

INC AX Increment the content of AX by 1.

INC [2000H] Increment the content of memory location
2000H by 1.

INC TEMP Increment the byte or word named as TEMP
by 1.

@ DEC destination

This instruction subtracts 1 from the indicated destination.

— The destination can be a register or y Ic specified
by any one of 24 ways given in Table 3.2.2.
— Immediate data cannot be an op d of this i
Flag affected : OF, PF, AF, SF, ZF.
Operation
Destination « destination — 1.
Examples
DEC AX Decrement the content of AX by 1.
DEC [2000H] Decrement the content of memory location
2000H by 1. :
DEC TEMP Decrement the byte or word named as TEMP
byl. -

@ CMP destination, source

The CMP instruction make a comparison between a byte/word
from the specified source and a byte/word from the specified
destination.

The source and destination can be an immediate data, a
register or a memory location specified by one of 24 ways
given in Table 3.2.2.

However, the source and the destination cannot both be
memory locations. ;

The comparison is actually done by non-destructive
subtraction of the source byte or word from the destination
byie or word ie. the source and the destination will not
changed, but the flags will set to indicate the results of the
comparison.

—

' Instruction Set of 8086 Microprocessoy

convert the result of the addition of
nto a packed BCD number.
gister. So, DAA instruction must

le'in AL accumulator is
set, the DAA instruction

in AL accumulator is
DAA instruction

— This instruction converts the number byte/word in a

| Destination « 2™ Complement of destination

_ DAS instruction only works on AL register.

So, DAS instruction musl be used after the SUB/SBB
instruction.

The SUB/SBB instruction subtracts the two BCD number i in
hexadecimal format and DAS instruction convert thig
hexadecimal result to BCD result.

— The working of DAS instruction is given below.

1. If the value of the lower nibble in AL accumulator js
greater than 9 or if AC flag is set, the DAS instruction

> subtracts 6 to the lower nibble of AL accumulator.

2. If the value of the higher nibble in AL accumulator is
greater than 9 or if CF flag is set, the DAS instruction
subtracts 6 to the higher nibble of AL accumulator.

Flag affected: CF, PF. AF, SF, ZF and OF is undefined. !
Operation : :
(a) If lower nibble of AL > 9 or AF = I then AL = AL - 06.
(b) If higher nibble of AL >9 or CF = 1 then AL = AL — 60. {
(c) If both above condition is satisfied then AL = AL — 66.
Examaple
If AL = 55 BCD and BL = 49 BCD |
Then SUB AL, BL 0101 0101 = AL = 55 BCD
— 0100 1001 = BL = 49 BCD |
0000 1100=AL=0CHandCy=0,AF =1
Now, in above example after subtraction, the value of lower |
nibble of accumulator is greater than 9 as well as AF flag is set. So |
DAS instruction subtracis 6 from lower nibble of AL register to get -
correct BCD result i.e. 06 BCD as given below. |
After the execution of DAS instruction, the result is Cy =0
0000 1100 = AL = 0CH; AF = 1 and lower nibble > 9
- 00000110
0000 0110 = AL = 06 in BCD form

@ NEG destination

destination in the 2’s complement and store result in the
destination which may be a register or a memory location
specified by any one of the addressing modes.

Flag affected: OF, CF, PF, AF, SF, ZF.

Operation

Examples

~ NEG AX Replace the number in AX with
e its 2's complement.
NEGBYTEPTR[BX] Replace byte at offset [BX] in DS

with its 2's complement.

@. Mlcroprocessors (MSBTE - Sem 4 - Comp.) _

A

— When a byte is muluphed with the byte in AL, then the result

is stored in AX because the result of multiplication of two

8-bit i.e. bytes’ numbers is maximum 16 bits.
- When a word is multiplied with the word in AX, then the

MSW of result is stored in DX and LSW of result in AX
register because the result of multiplication of two 16-bit.

numbers i is maximum 32-bits.
- Ifthe MSB orMSW of the result is zero, then CF and OFboth

will be set.

_ Flag affected : OF, CF and PF, AF, SF, ZFamuudeﬁned

Operaiion
(a) If source is byte then AX ¢ AL * unsigned 8 bit source. -
(b) If source is word then DX:AX AX * unsigned 16 bit

source.
Examples
MUL BL Muitiply AL by BL, resuit in
AX.
MUL CX Muitiply AX by CX, resultin
DX:AX.
MUL BYTE PTR [BX] - Multiply AL by byte in DS
pointed by [BX], result in AX.

@ |MUL source

— This instruction is used to multipiy a sigaed byte from source
with a sigaed byte in the AL regisier during signed byte
multiplication and a signed word from source with a signed
wond in the AX register Guring signed word multiplication.

— The source must be a regisier or a memory location.

— When a byte is multiplied with the byte in AL, then the resuit
is stored in AX because the resuit of two 8-bit ie. bytes
numbers is maximum 16 bits.

— When a word is multiplied with the word in AX, then the
MSB result is stored in DX and LSB in AX register because
the result of two 16-bits i.e. words numbers is maximum
32-bits.

— If the magnitude of the product does not requires all the bits of
the destination, the unused bits are filled with the copies of the
sign bit.

Flag afiected : OF, CF and PF, AF, SF, ZF are undefined.

Operation

(a) Ifsoumeisbytel.henAX‘—AL*signedeitsomee

() - If source is word then DX:AX ¢ AX * signed 16b1|

source.

Examples z

IMULBL Multiply AL by BL, result in AX.

IMULCX Muitiply AX by CX, result in DX:AX.

IMUL BYTE PIR [BX] Muliiply AL by byte in DS pointed

L = by [BX], resuli in AX.

Example of maltiplication of sigaed byte with signed word.

MOV CX, multiplier Load signed word multiplier in CX.

MOV AL, multipticand T mgned byte multipiicand in

CBW Extend sign of AL into AH. ;
_IMUL CX ‘Word multiplies, resuit in DK:AX. |

dividend byte in AL and fi

dividend.
- When we want to divide

=

@ Microprocessors (MSBTE - Sem 4 - Comp.)

Mi
insruction Set of 8086 Microprocesy,,

3-15
T e the division op , 8 bit q will be availablein | OPer2te" filled with sﬂﬁ'ofALi'c'D]
AL register and 8 bit inder will available in AH register (A 0000000 1011
- During the division of double word by word, the dividend o i
must be in DX: AX for double word or AX for word, but ’“‘ o s;gned a2 AX

source of the divisor should be a word or byte register or a
memory location.
= During the division of a byte by a byte, we must first store
dividend byte in AL and fill AH with all 0’s for unsigned
dividend.
~ If word or double word is-divided by 0 or the quotient is t00
large to fit in AL or AX i.e. greater than FFH or FFFFH, the
8086 will automatically generates a type 0 interrupt i.e. divide
by 0 interrupt or divide overflow interrupt.
— For division, the dividend (numerator) must always be in
AX:DX for word denominator and AX for byte denominator,
but source of the divisor (denominator) can be a register or a
memory location.
— When we want to divide a byte by a byte, we must first store
dmdendbytemALandﬁllallbnsmAme;xgnhtofAL
using CBW instruction.
= When we want to divide a word by a word, we must first store
dividendwmdinAXn)dﬁllaﬂbilsinDXwithsigubilof
AX using CWD instruction.
Flag affected : None and OF, CF, PF, AF, SF, ZF are undefined.
Operation 3
(a) If source is byte then
AL « AL / signed 8 bit source
AH «AL MOD signed 8 bit source.
(b) If source is word then
AX « DX:AX / signed 16 bit source
DX « DX:AX MOD signed 16 bit source.

CBW convert signed y:x 1111111 10011011

@ CWD

This instruction Copies the sign bit of a word in AX to alj gy,
= s
bts of the DX register- .
mm;wmd.nexw“d“h”“‘“f AX into all of DX,

n must be done before performing divisiop

= CWD operatiol
::': signed word in AX by another signed word with the D[y

instruction.
Operation 4
DX < filled with 162 bit of AX i.e. Dis.

DX = 00000000 00000000

AX = 11110000 11000111.

CWD Convert signed word in AX to signed double word in DX
AX.

Result after the execution of CWD.
DX = 11111111 11111111
AX = 11110000 11000111.

@ AAA [ASCII adjust after addition]

~ This instruction can be used to convert the contents of the AL
register to unpacked BCD result.
= The higher nibble of the AL register is filled with zeros.

= This instruction should be executed after the ADD instruction

AL =01H

T

[@. Microprocessors (MSBTE - Sem 4 - Comp.)
—

3-16

Instruction Set of 8086 Microprocessor

@ Difference between AAA and DAA

@ AAS [ASCII Adjust after Subtraction]

— This instruction can be used to convert the contents of the AL
register to the BCD result.

— The higher nibble of the AL register is filled with zeros.

— This instruction should be executed after the SUB instruction
and the result is placed in the AL register.

— The working of AAS instruction is as follows.

Flag affected AF and CF.

The binary number in AL register is divided by 10 and the
quotient is stored in the mg:slerAH and remainder is stored in

[sr, AAA DAA the AL register.
No. _ The working of AAM instruction is as follows :
1. | ASCll adjust after DAA Decimal adjust Flag affected : PF, SF, ZF
adition instruction aocumuiator Operation :
corverts the contents of | Instruction Corvert (a) AL=ALMOD 10.
the AL register to Hexadscmal () AH = AL/ 10 [Only integer part is considered].
unpacked BCD resut. resit to BCD resuit Example
Operation: Operdtion : AL =06 BL =08.
t 1. Ow'therig\aw @ Hlo;\.g'ritﬁed MULBL AX=30H (48 in decimal).
nbble o AL ie AL>90r AF=1, AAM AH =04 and AL = 08.
AL=AL AND OF. then AL = AL +06.
2 Iflower nibbleof AL> | (b) If higher nibble of @ AAD [ASCII adjust before division]

L AL>9(X%F|_=1§” — This instruction AAD can be used to convert the unpacked
ottt plarlo o BCD digit in AH and AL registers to the equivalent binary
®) AH=AH+1. © "cmmdﬁcmnam number in the AL register.

(OUE=CEl; satisfied, - — This instruction should be issued before division instruction.
(@A =ACARDOE then AL=AL +66. — The division instruction will place the quotient in the AL
register and remainder in the AH register.

The higher nibble of AH and AL are filled with zeros.

Flag affected : PF, SF, ZF
Operation

(a) AL
Example

='AH *10+AL (b) AH=00

AX = 19H (25 in decimal) and BL = 07 H (7 in decimal) AAD
DIV BL
@ Difference between ADD and ADC

AL = 03 quotient and AH = 04 remainder

ADD : The ADD instruction adds a number from some source

less than 100; hence, the result will be in the register AL.

Examples SRR ! Operation g o = e
IDIVBL Divide a signed word in AX by a sgned bye | - restltis placedin the AL register. 1. Clear the higher order nibble of AL i.e. AL = AL AND OF. s b G %
in BL, quotient in AL and remainder in AH, working of AAA instruction is as follows. 2. Iflower nibble of AL>9 or AF = 1 then = ADC:The ADD instruction adda s pesier S S
IDIV CX Divide a signed double word in DX and AX | ™ Before the exccution of AAA instniction, AH should be) AT = ATIEe to a number from some destination with carry.
by a signed word in CX, quotient in AX and loaded with 0, (®) AH=AH-1
remainder in DX. Flag affected : % s :
: AF = CHE Syllabus Topic : Logical or Bit Manipulation
IDIVNUM (BX] Divide a signed word in AX by a signed byte | Operati o O @) ARS sl % g "
in memory location pointer by [BX]. (d) AL =AL AND OFH. Instructions
ivisi 1. ; -
Example of division of signed byte with signed byte. Clear the high order nibbje of ALie. AL=AL AND Example
MOV B ivi i Aoy 8 AL OF.
L, dfv?sor Load signed byte divisor in BL. 2. Iflower nibble of AL > orAF= 3.4.3 Logical or Bit Manipulation Instructions
MOV AL, dividend Load signed byte dividend in AL. @AL< g A3
CBW R s S ATl ko AR =AL+6, Bloetheoeatindf AS Sppse AH=(2H, D (MSBTE-S-14, W-14, 515, W-16, W-17,5-18)
IDIVBH Byte division, remainder in AH and quotient in (B)AH=AH+], AL=08H Q.3.4.18 Compare the following '
' AL (©)AF=CF= After the execution of AAS AH=01H :
AL=05H
@ CBW l:)&: AL AND opy.
‘ol g . . . 3
B This inariction copicsTthe sign o byt i AL to all the bt AAA AAM [ASCII Adjust after Multiplication]
AH.. Before the bl This instruction can be used to convert the result of the
- AHis then said to be the sign extension of AL, €Cution of AAA, Suppose A = oot multiplication of two valid unpacked BCD numbers.
~ The CBW operation must be done before performing divisio I i This instruction should be issued after the multiplication
of a signed byte in the AL by another signed byte with DIV After the execution of AL = 0BH instruction.
instruction. gt AH =01H The operation of MUL on unpacked BCD number is always

 Flag affected : CF = 0, OF = 0, PF, SF, and ZF.

Instruk:ﬂont of Microprocessg,

OR CX, [ST] ,OR word at offset {SI] in data segment vity
word in CX. Result in CX register. :

@ NOT destination

_ This instruction inveris each bit of the byte or word at the
specified destination i.e. 1's complement.

_ The destination can be a register or a memory locatioy
speciﬁed by any one of 24 ways given in Table 3.2.2.

Flag affected : None

Operation .
Destination « NOT destination
" Examples ;
NOT BX Complement the contenis of BX register,
NOT [4000H] Complement the contents of the memory
- location 4000H.
NOT BYTE PIR [BX] Complement the contents of the memory
focation pointer by [BX].

& XOR destination, source

— This instruction perform the logical operation i.e. Exclusive
ORs of each bit in a source byte or word with the same
number bit in a destination byte or word and stores result in
the destination.

— The result for each bit position will be as per the truth table of
two inputs XOR gate. : E

— The source operand may be an immediate number, register, or
memory location. :

— The destination may be register or a memory location. ~ - |

— But, the source or destination should not both be memory |
locations in the same instruction.

Operation
Destination < destination XOR source.
Examples
XOR BH, CL XOR byte in CL with byte in BH, resultin BH.
XOR BX, O0FFHXOR word in BX with immediate data
’ O0FFH.
XORCX,[SI] XOR word at offset [ST] in data segment with

word in CX. Result in CX register. .

. TEST destination, source
3 Tw'l:: iul:trucﬁon ANDs the contents of a source byte or word
v contents of specified destination byte or word and
ﬂi;gx are updaled, but neither operands are changed.]
TEST instruction is often
R used to set s before 4
conditional jump instruction. o i

The source operand E
” ' may be an j >
register, or the memory | Y .an immediate number, the

@Mlc oprocessors (MSBTE - Sem 4 - Comp.

_ The destination operand must be a 8 or 16 register or a
memory location.

Flag affected : CF, OF, PF, SF, and ZF.

Operation
Flags « set for result of (destination AND source).

Examples .
TEST BH, CL AND byte in CL with byte in BH, no result,

Update PF, SF, ZF.

TEST BX,00FFH AND word in BX with immediate data
00FFH, no result, Update PF, SF, ZF.
TEST CX, [ST] AND word at offset [SI] in data segment

with word in CX, no Result, Update PF,
SF, ZF.

@ Difference between AND and TEST

@ SHL / SAL destination, count

— SHL and SAL are two mnemonics for the same operation. -

— This instruction shifts each bit in the specified destination
counts times toward left.

— As a bit is shifted out of the LSB position, a 0 is inserted in
the LSB position.and the MSB will be shifted into the CF.

— In the case of multiple shifts, CF will contain the bit most

recently shifted in from the MSB and bits shifted into CF

previously will be lost. - 5

— The destination operand can be a byte or a word in a register
or in a memory location.

— If the desired number of shifts is one, this can be done by
putting a 1 in the count position of the instruction.

— For shifts more than 1 bit position the desired number, then
the count value i.e. shift count must be loaded in CL register

. and put CL register in the count position in the instruction.

— The SAL and SHL instruction can be used to multiply an
unsigned binary number by a power of two.

Flag affected : CF, OF, PF, SF, ZP; and AF is undefined.

Operation

CF
Examples

MSB

LSB«— 0

~ The LSB will be shifted into CF. b
~ Incase of multiple shifts; CF will contain th

~If the desired number of shifts is

Sr. AND " TEST
No. 5 y v il
1. | Destructive AND instruction | Non Destructive AND
means destination is instruction means
modified after the execution | destination is not modified
of Instructions after the execution of
Instructions
2. | Flag affected : CF =0, OF = | Flag affected : CF, OF, PF,
0, PE, SE, ZF. SF, and ZF. -
3. | Operation : Operation :
Destination < destination Flags « set for result of
AND source. (desti AND source).

1% CF=0 BX = 11100101 11010011.

kept in the MSB position i.e. the
MSB. A

shifted in from the LSB, so bits
will be lost. : ‘

in a memory location.

putting a 1 in the count position of

BX = 11100101 11

SARBX,1 Shift the contents of
toward left. ;
CE=1 BX = 1111001

2. MOV CL.04H Load desired mnnbeﬁ

@ SHR destination, count

~ This instruction shifts each bit i
“counts times to right.

in its place. .
The bit shifted out of the LSB

e

_@Mcmpfoeessors (MSBTE - Sem 4 - Comp.)
_—
| If the desired number of shifts is one, this can be done by

Flag affected : CF, OF, PF, SF, ZF and AF is undefined.

Operation
0 MSB LSB —> CF
Examples :
1¢ CF=0 BX = 11100101 11010011.
SHR BX, 1 Shift the contents of BX register by one
toward left.
CE=1 BX =01110010 11101001.
MOV CL, 04H Load desired number of shifts in CL.

28

% ROR destination, count [Rotate right without carry]

" In the case of multiple bit rotates the CF will contain a copy of

3-19

writing 1 in the place of count.
But, for multiple shifts, the number of desired shifts is loaded
into the CL register and CL is kept in the place of count.
The SHR instruction can be used to divide an unsigned binary
number by a power of two.

SHR AX, CL Shift word in AX right CL bits times.

This instruction is used rotates all the bits of the specified byte
or word by count times toward right.

The bit rotated out of LSB is goes into the MSB and also
copied to CF.

the bit most recently moved out of LSB.
The destination operand may be a byte or word in a register or
in a memory location.
If the desired number of rotation is one, this can be done by
writing 1 in the place of count.
But, for multiple rotations, the number of desired rotation is
loaded into the CL register and CL is kept in the place of
count.
‘This instruction can be used to swap the nibbles in a byte or to
swap the bytes in a word.
It can also be used to rotate a bit into the CF where it can be
checked lnd acted upon by the conditional jump instruction,
IC [jump if carry) or INC (jump if no carry).

Instruction Set of 8086 MinOprocesscr
—

@ ROL destination, count [Rotate left without carry)

This instruction rotates all of the bits of the specified byte o

word count times toward left.
The bit moved out of MSB is rotated around into the LSB and
also copied to CF.

In the case of multiple bit rotates the CF will contain a copy of

the bit most recently moved out of MSB.

The destination operand can be a byte or word in a register o
in a memory location specified by one of the 24 ways i
Table 3.2.2.

If the desired number of rotation is one, this can be done by
writing 1 in the place of count.

But, for multiple rotations, the number of desired rotation jg
loaded into the CL register and CL is kept in the place of
count.

This instruction can be used to swap the nibbles in a byte or to
swap the bytes in a word.

This instruction can also be used to rotate a bit into the CF and
then it can be checked and acted upon using the conditional
jump instruction, JC [jump if camry] or JNC
[jump if no carry].

Flag affected : OF, CF

@. Microprocessors (MSBTE - Sem 4 - Comp.)

3-20

Instruction Set of 8086 Mmpmmor

But, for multiple the ber of desired ion is
loaded into the CL register and CL is kept in the place of

count.

Flag affected OF, CF
Operation

MSB————— > LSB — CF

! i

Examples

1. CF=0 BL =0011 1011.
RCRBL, 1 Rotate all bits in BL right by one
bit position.
CF=1 BL = 0001 1101.
28 MOV CL, 08H Load count in CL.
CF=1 AX = 10011110 00111000.
RCR AX, CL Rotate all bits in AX right by 8 bit
position i.e. Swapping of byte.
CF=0 AX = 01110001 10011110.

@ RCL destination, count [Rotats left with carry]

This instruction is used to rotate all the bits in a specified byte
or word with carry by counts times towards left i.e. the MSB
oﬁheopemndismmedinmtbecarryﬂagnndmcbitincany
flag is rotated into the LSB of the operand.

In the case of multiple bit rotates the CF will contain a copy of
the bit most recently moved out of MSB.

The destination operand can be a byte or word in a register or
in a memory location specified by one of the 24 ways in
Table 3.2.2.

If the desired number of rotation is one, this can be done by
writing 1 in the; place of count.

But, for multipl the ber of desired ion is

@ Differentiate between RCR and RCL

Use to rotate all the bits in
specified byte or word with
camry by counts times to
right.

Use to rotate all the bits in
specified byte or word with
carry by counts times to
R ,

LSB of operand goes to CF
and CF bit goes to MSB of

MSB of operand goes to CF
and CF bit goes to LSB of
operand. d

In case of multiple bits
rotation, CF will contains a
copy of the bit most

In case of multiple bits
rotation, CF will contains a
copy of the bit most

CF = 1, BL = 0001 1101.

recently moved out of LSB. | recently moved out of
MSB.

Example: Example:

If CE =0, BL =00111011. | If CF=0BL = 0011 1011.

RCRBL, 1 RCLBL, 1

Then Then

CE=0 BL=01110110.

Difference between ROL and RCL

ROL : This instruction rotates all of the bits of the specified
byte or word count times toward left without carry.

RCL : This instruction rotates all of the bits of the specified
byte or won:l coum times toward Ieﬁ with carry.

loaded into the CL register and CL is kept in the place of
count.

Flag affected : OF, CF

Flag affected : OF, CF
Operation
MSB — .| —+CF
Examples
1. (;F=0 BL=0011 1011,
RORBL, | Rotate all bits in B right by one bit
position,
CF=1 BL =1001 1101,
2, MOV CL,08H Load countin CL.
CF=1 AX = 10011110 00111000,
RORAX,CL - Rotate all bits in AX right by 8 bit
position i.e. Swapping of byte.
CF=0

AX =00111000 10011110,

Theop—codeformalofﬂ:eenmshlﬁandmmsmm
are given below. The entire shift and rotate instructions are of two
bytes. Out of these two op-code bytes, first byte of the op-code of

Operation
CE<——r MSBY*—— LSB
Examples L I
1. CF=0 =1011 1010.
ROLBL, 1 Rotate all bits in BL left by one bit
position.
CF=1 BL =0111 0101.
2: MOV CL, 08H Load count in CL.
CE=1 AX =0001111000111001.
ROL AX, CL Rotate all bits in AX left by 8 bit
position i.e. swapping of byte.
CF=0 AX = 00111001 00011110.
@

RCR destination, count [Rotate right with carry]

This instruction is used to rotate all the bits in a specified byt®

or word with camy by counts times towards right

ie. ﬂ.\e. LSB of the operand is rotated into the carry flag and

the bit in carry flag is rotated into the MSB of the operand.

In the case of multiple bit rotates the CF will contain a copy of

the bit most recently moved out of L.SB.

'llzlc destination operand can be a byte or word in a register of
a memory location specified s o

S peci by one of the 24 way:

If
w::ndesm number of rotation is one, this can be done by
2 Lin the place of count.
—-/

Operation
CF,_ MsB LSB
R
Examples
ISR GRS BL =0011 1011.
RCLBL.1 Rotate all bits in BL left by one bit
position.
CF=0 BL=0111011L
2. MOVCL, 08H Load countinCL.
CF=1 AX = 10011110 00111000,
RCLAX,CL Rotate all bits in AX left by 8 bit position
i.e. Swapping of byte.
CE=0 AX =00111000 11001111

entire shift and rotate instructions are same.
_ Instruction code
SHUSAL =shift Logical P
= 78543210 78543210
=Sl At 110100vw | mod100wm
SAR =S Airetic gt 110100vw | mod 101 /m
ROL=Rotats Let 110100vw | mod111rm
ROR = Rotets Aight 110100vw | mod 000 rm
ROL = Rotste Thvough Canry Reg Let 110100vw | mod001vm
R = Ftete Trvough Cany Fight 110100vw | mod010rm |
110100vw | mod011rm

Byte 1 Byte 2

Now, compare above op-code formats of entire shift and

rotate instructions with the following general op-code format of the

instruction.

]

|
|

t of 8086 Microprogg, ;

. st,ucﬂon Se . SSor

E—EM""P’“ rs (MSBTE - Sem 4 - Comp,) 321 - R ions Aol
. | transfer OF brar “‘.' o ¢ e e

76543210 78 53 20 e o of el 0; g . (0/ney

- - hange] tion directly or inCirectly,
lﬁ“.TTTTTTTT . Mod Reg® 2 ified in the inSUCH
l eg* R/M] address spectit pstruction iS executed, the contents of Cs

H__JH_J

Opcode
1 byte ~ ModR/M byte
(T represents an "®9iSter and/or address
opcode bit) mode spedifier

Ifl §econd.byv.é. the bits 34,5 are different depending on the
operation specified by the instructions and remaining bits i.e.
0,1,2,6,7 are same for entire shift and rotate instruction. The Reg

field specifies general purpose register operands but for entire shift

‘:md rotate instructions Reg field is used as op-code extension field
ie. TTT. These op-code extension field TTT is different in entire
sl.nﬁ anc! rotate instruction. These op-code extension field TTT
differentiate between the entire shift and rotate instructions.

Syllabus Topic : Program Centrol Transfer or
Branching Instructions

3.4.4 Program Control Transfer or Branching
Instructions

= (MSETE - W-14, W-15, S-16, $-17, W-17)
G.34.27 What are the functions of CALL and RET
e - instruction? Write syntax of CALL and RET

- (Ref. sec. 3.4.4) g #S)
.28 Name the different types of jump
M usad in 8086 assembly language program. (any
~_ eight) (Ref. sec. 5.4.4) TS

e 4.4 ; 521624 Mapks?
) Write any. two conditional and two unconditional
. branching instruction with their function. Give the

ef. sec. 3.4.4)

Conirol Transfer or
Branching Instructions

1. Unconditional control transfer o
branching instriictions %

2. Conditional control transfer or
branching instructions]

Fig.34.2: Conunl'l‘rlnsreroannchlnglmtmcﬁons.

i of i
— When this t:tfrs gt o aded with new values of CS zpq »
and IP reg! where the flow or path of execution

corresponding 0 Jocation

is going to be transferred- B

Depending on the addressing modes specified in Table 32,
the CS may or may not modify.

There are two (ypes of control transfer or bfancmng

instructions as given as follows.

=) (1) Unconditional control transfer or branching
instructions

exccution to the specified memory location independent
of any condition or stafus.

The CS and IP are unconditionally modified with a new
CS and IP values.

instructions

— This type of instruction transfers the control of
execution to the specified memory location dependant
of any condition or status provided by the resuit of the
previous operation which satisfies a particular condition
ie. status of flags, otherwise, the execution continues in
normal flow sequence.

— In other word, using this type of instruction the control
will be transferred to a particular memory location, if a
particular flag satisfies the condition.

1. Unconditional control transf: i
fer or b
instructions R

" CALL a procedure

= The CALL instruction

15 used to transfer the program control
to the sub-program or subroutine, ;
There are two basic
CALL is a call ¢y a

segment as the CALL instruction
= When the 80 i
pointer is decslzl:l:e::[es the near CALL instruction, the stack
next instructioy 1165 two and copies the offset i.e. IP of the
n after the CALL, instruction on the stack.

This offset value i
t the calling pcml;:d (© trnsfer back the program control
ure, after the execution of subroutine Of

types of CALLs, near and far. A near

Procedure, which is in the same code

This type of instruction transfers the control of‘

<) (2) Conditional control transfer or branching ,

@ Microprocessors (MSBTE - Sem 4 - Comp.)
——— -

3-22

~ A far CALL is used to call a procedure, which resides in
another code segment from that which contains the CALL
instruction.

— When CPU 8086 executes the far CALL instruction, the stack
pointer is decrement by two and copies the contents of the CS
register onto the stack.

— Again, the stack pointer is decrement by two and copies the
contents of IP i.e. offset of the next instruction after the CALL
instruction onto the stack. ’

~ Finally, it loads CS with the segment base address of the code
segment that contains the procedure and TP with the offset of
the first instruction of the procedure in that segment.

— A RET instruction at the end of the procedure will retum
execution fo the next instruction of the calling program by
restoring the saved value of CS and IP from the stack.

— Operation

1. If NEAR CALL, then SP < SP—2 Save I[P on stack

IP « address of procedure

then SP « SP —2 SP

« CS i.e. Save CS on stack

CS « New segment base address of

the called procedure SP < SP -2

SP « IPi.e. Save IP on stack IP <

New offset address of the called

23 If FAR CALL

procedure
Examples
CALL DELAY Direct within the segment that calls the
procedure of name DELAY.
CALL BX Indirect within the segment where BX
contains the offset of the first
Instruction of the procedure and
replace the contents of IP with
- contents of BX register.
CALL FAR PTR SHOW Direct to another segment i.e. far or

inter-segment; SHOW is the name of
procedure and must be declared FAR
with SHOW PROC FAR at its start.
The assembler will determine the code
segment base for the segment, which
contains the procedure and the offset
of the start of the procedure in that
segment.

@ RET instruction

— The RET instruction is used to return the program execution

control from a procedure to the next instruction immediate

after the CALL instruction in the calling program.

If the procedure is a near procedure, then the return will be

done by restoring the value of IP with a word from the stack

top. =

_ The word from the stack top is offset of the next instruction
after the CALL instruction in the calling program that was
pushed on the stack by the CALL instruction.

— After the replacement of CS, again the stack pointer is
incremented by two. A | .
I, ForNEAR Rewmthen [P ¢ content of top of stack. ;
SP«SP+2.°)
2. ForFARRewumthen IP « contents of top of stack. .
© SPeSP+2. s Lo
CS « conteats of top of stack. o

So, the stack pointer is incremented by two ¢
is popped from the stack toTP.

If the procedure is far procedure .
segment from the CALL instruction which calls 2
be replaced by the word from stack top which is nothing

the offset of the rext instruction after the CA I i
the calling program pushed by the by the CALL ins
Again, the stack pointer is incremented by two; the CS.
replaced with the current stack top, which is the segment base
of the segment where CALL instruction resides. 0

SP < SP+2.

@ INT N [N = type of interrupt]
= Thisinsuucﬁoncauses'thOSGtocaﬂ“aﬁlrpmeedmeina =

mznnersimilarwﬂlpwdyinwhichdlesosﬁmépondwln
interrupt signal on its INTR or NMI inputs. T g g
The term type in the instruction refers to the number between - e 1
0 and 255 that identifies the interrupt. I
When the 8086 execute an INT type instruction, it will
perform following operation. |
(a) Decrement the stack pointer by two and push
on the stack. ‘3
(b) Decrement the stack pointer by two again and push the
contents of the CS. b -
Decrement the stack pointer by two again and push the
offset of the next instruction after the INT type
' instruction on the stack. . i
Get the new value for IP from an absolute mi
address of 4 times the type specified in the instruction.
For example, for an INT 8 instruction, the new IP will
be read from address 00020H. i R
Get a new value for CS from an absolute
address of 4 times the type specified in
plus 2. 3 it
Reset both the IF and the TF flags, other flags are
affected by this instruction. At

the flags -

©

e i Nk

(d)

)
®

INTO Instruction ‘[lnbrrul-ﬂ on ovorllov:] o

If the overflow flag OF is set, this instructio
type 4 interrupt and causes the 8086 to do
procedure which is written by the user to h:
condition. T SAGRNSS
When the 8086 executes an INTO instruction,
following operation. ?
(a) Decrement the stack pointer by two ;

on the stack. :

Microprocessors v
_‘@ (MSBTE - Sem 4 - Comp,) 323 : ‘ J

(b) Decrement the stack pointer by two and push CS on the | [s; @. Microprocessors (MSBTE - Sem 4 - Comp.) 3-24 : Instruction Set of 8086 Microprocessor :

(©) Decrement the stack pointer b : Instruction | | Fumction. | Syntax | | 3.4.4(B) Comparison of JNC and JMP : :
contains the offset of the next 'ymsmtrucuo ?aﬁ?f axl:usm'[‘oh S Example : ! - JGE/ Jump if greater or equal|JGE label Instructions in 8086 ;
instruction on the stack. 4. | jmp adrs32 direct .'lmp disp16 ;direct SF=OF after signed math : A = (MSBTE - S-15, S-18)

@' Get the new value for IP from an absolute memory intersegment SRgment INL Jump if not less SF = OF after . | INL label ==

: address 00010H in IVT. = signed math

€) Get a new value for CS i IN

from an absolute memo INGE/ Jump if not greater or equal (JNGE label
address 00012H in IVT. Y| IMPDOWN L SF# OF after signed math
® l:.’::‘,“"T"fandtbelF.omerﬂagsaxenomfrecmdby JMPFARFTR SK'E Jump if less than|jT label
Instruction. | SF # OF after signed math
2 @ Conditional jump instructions ILE Jump if less than or equal|JLE label
IRET instruction a : IN SF#OF and ZF = 1
E — The conditional JMP instruction transfer the control to the G A e
- s Sher] . ; e s T Si

The IRET instruction is used at the end of the interrupt service target location if some specified condition is satisfied. Jum ifg:m greater SF # OF and F . T

procedure to return the execution to the interrupted program. | - Conditional JMP instructions are normally used after compan, 7F _Pl after signed math L. _CO::::;)“I branching | Unconditional branching
— During the jon) G 1 : : ithmetic oalls i = ins on

saved value of IP fro S = e DOuG copies; the el o — . INE/ Jump if not equal ZF = 0 Jump | JNE label 2. | CF flags checked by this | No flags are affected or

Ll m the stack to IP, the saved value of CS | — The different types of conditional instruction are given jy INZ if not Zero ZF = 0 INZ label instruction but CF flag is | checked by this instruction

B i O tad sved value of flags back i the (g Table 1 INO Jump if not overflow INO label unaffected

o - Table 3.4.1 OF=0 3. | If CF=0 (reset), the | The program control is
@ [Pi 2 £, 9% epaction ae; Instruction | Function INP Jump if not parity PF=0 NP label program control transfer | transfer to 2000H without
iy e o sack thee SP 2S£ 2. i v JPO Jump if Parity ODD PE=0 | JPO label to memory location | checking the condition of any
() CS is popped from the stack the icxz Jump if CX register is Zero ICXZ label P 2000H f |
S 2 W SEes SBL2! LOOP R : INS Jump if not sign SF=0 INS label 2 |
(©) Flag register is popped from the stack then R S LOOP label , = — 4. | Conditional INC | Unconditional ™MP
SP ¢« SP+2. if CX # Zero 10 Jump if Overflow OF = instruction is normally | instruction is used when —.'
] LOOPE/ CX=CX -1, jump LOOPE label JP Jump if parity EVEN JP label used afier compare | program comtrol to be
< JMP destination address LOOPZ if CX # Zero and LOO JPE PE=1 JPE label instruction or arithmetic | transfer any part of the
L i e Sreondtonal ZF=1 e Jump if Parity equal PF=1 or logical instructi program after any instruction
i P‘" instruction unconditionally transfers the control of | |LOOPNE/ [CX =CX -1, jump LOOPNE label JS Jump if sign SF=1 JS label @ Difference between JMP and JNC
s ﬂc‘s‘= e e 165 S L i SOOPNZ labet 3.4.4(A) Comparison of Jump and Call - JMP; The progmm coutol fs el iRERE S
N = AL JA Jump if above JA label A4 lnosTpc“(s:‘ In 8086 P checking the condition of any flags i
S e o cted or checked by this instruction. [CF=0and ZF = () n — INC: If CF=0 (teset), the program control transfer to the :
fmdy'm“"“. of JMP is in the same code segment, it requires | ["NEE Jump if not below or equal INBE label = (MSBTE - S-15, S-18) specified memory locatton. _
instruction pointer IP to be changed to transf [CF =0 and ZF = 0] .
conirol to the target location. JAE/ emOIE s = Q. 3.4.32 Compare between Jump and Call instruction in Syllabus Topic : Process Control Instructions
. el p if above or equal [CF = 0] |] e =
-* Sucha cailod : | [JAE Label 8086. (Rel. sec. 3.4.4(A) -
i B Seat janp or Regr jurp. INB/ Jump if not below [CF = 0
. [If the target for the instruction JMP is in different code | [N o | T8 Jibol Sr. JMP Instruction CALL instruction 3.4.5 Process (Machine) Control Instructions
segment from that containing the instruction JMP, then IP and g 8o carry [C¥ = 0] INC label No. : : > (MSBTE - W-16, $-17)
gih““" be changed to transfer control to the target location. | |"B Jump if below JB label 1. |A JMP instruction [A CALL instruction —
@ Jump s called as far o inter-scgment jump. [CE=1] permanently changes the IP | store IP for near call and
< Difference Between Inter and Intra INAE/ Jump if not above or for near jmp and CS:IP for | CS:IP for far call on the
. Segment jump [CF=1] equal [INAE label far jmp. stack so that the original .
B ; PR]|]I Jump if program execution
e Ries | Intra:Segment Jump [CFP IC label sequence can be
—— Lo O N R G R B e} =1] resumed.
Intersegment jumps can | Intrasegmens P JE/ Jump if equal B : - = - X
|, | tmansfer control to a | always between || |72 [ZF=1] label 2. | Does not requires RET RET- instruction s Machine Control instructions
::‘:mdm in a different | instructions in the s Jump if Zero JZ label instruction. Ell:ued to retum to
segment. | code ng program
- 8 [ZF=| = i 1.HLT: i
2 Intersegment jumps is | Intra Segment jump s JG\ Jump if] 3. | Conditional ml::ll’ l;oALiucfh Co}:d:uonaj T : Halt I
called as FAR jump called as NEAR j i SipAee JG label instructions are av e instructions are -
Requires Code Requires only ﬂ:lmp [| ;mmZF:oaﬁef which - transfer program | available. 2. NOP : No Operation I
: REBEE b S matics trol to the target location
3 register CS and instruction | instruction pointer IP o INLE JUmp if ot jess ?fonsome spm-mm condition T 3 WAIT
.| pointer IP to be changed to | be changed to transfer SF = OF ang O equal | JNLE label o :
transfer control to the target | control to the \J signed .ZF = 0 after is satisfied. :
location. location, % 4. | Stack is not used by JMP | Stack is used by CALL
: _\—/ instruction instruction. Fig. 3.4.3 : Machine Control Instructions
=

.

@] icrop struction Set of 8086 Microproce,
—l rocessors (MSBTE - Sem 4 - Comp.) - 3-25 s ‘Ssgf..
=> L HLT:Hak This type of instruction ar® used to changed the status of flagg

state.

The CPU stops fetching and executing of the instruction.

occurrence of any one of the following events.
1. Inteuupt signal on INTR pin.

2. Interrupt signal on NMI pin. -
3. Reset signal on RESET pin.
=> 2. NOP:No Operation

This instruction is used to add wait state of three-clock cycles

and during these three clock cycles CPU dose not perform any
operation.

This instruction can be used to add delay loop in the program

and delaying the operation before proceeding to read or write
from the port.

= 3. WAIT

The instruction WAIT causes processor to enter into an ideal
state or a wait state and continues to remain in that the processor
receives state until one of the following signal.
1. Signal on processor TEST pin.

2. A valid interrupt on INTR pin.
3. A valid interrupt on NMI pin.
This signal is used to s
ynchronize with other external
hardware such as math co-processor 8087

=> 4. LOCK

This instruction prevents other
processors to

of shared resources, o
In mulhpmcessor system, the individual processors have their
own local buses and memory and then processor are
connected together by a system bus to access the shared
system resources such as disk drives or memory or DMA.
The LOCK instruction is used as
[a prefix to th

that has to } 3 i b

Example
-LOCK IN AL, 80H

The instruction HLT causes the processor to enter the halt

The CPU can be brought out of the halt stae with the

in the flag register such as CF, DF, IF.

Flag Manipulation Instructions

i-ol 1.CLC [Clear Carry] - [

2. CMC [Complement Carry]

e |
3. STC [Set Can’y]

{
WLD [Clear Direction flc.q] lf

mt«-rs STD [Set Direction flag]

-p{ 5. CLI [Clear lnterrupt flag] J

-;[7. STI [Set Interrupt flag] 1

Fig. 3.4.4 : Flag Manipulation Instructions

= 1. CLC/[Clear Carry]
This instruction clears the carry flag. CF « 0.
=» 2. CMC [Complement Carry]

This instruction complements the carry flag.
CF « " CF.

=> 3. STC[Set Carry]

This instruction set the carry flag. CF |.
=> 4. CLD [Clear Direction flag]

This instruction clears the direction flag. DF « 0.
<> 5. STD [Set Direction flag]

This instruction set the direction flag. DF « 1.
=> 6. CLI[Clear Interrupt fiag]

‘This instruction clears interrupt flag. [F ¢ (),

= 7. STI[Set Interrupt flag)

This instmgtion set the interrupt flag. IF « |

3.4.6 Flag Manipulation Instructions

P (MSBTE-W-16,5-1g)

llab :
Syllabus Topic : String Operation Instruction

3.4.7
String Manipulation Instructions
>

(MSBTE - 514, .14, S-15, W-15,
$-16, W-17, S-18)

instructions ~ and.

Microprocessors (MSBTE - Sem 4 - Comp.) 3-26

Instruction Set of 8086 Mi

Q.3.4.40 List and expiain any four siring operation
instructions with their functions and syntax
(Ref. sec. 3.4.7)

Q.3.4.471 Explain the instruciion of 8086 microproeessor
with their syntax : STRCMP.
(Ref. sec. 3.4.7)

Q. 3.4.42 Describe various sting instrucii
(Ref. sec. 3.4.7) 5

0Q.3.4.43 List the string relatea insiructions of 8083
‘microprocessor and expiain any wo |nyons
(Ref. sec. 3.4.7) W5 A arks

Q.3.444 Explain any two string operaiion instruciions with
suitahie examnpie.
(Ref. sec. 3.4.7)

Q. 3.4.45 Desoribe any two-string operation tnstmcﬁon of
8086 with syntax & one exampie of each. |

WA 2 MArks

SVAIIATRS

(Ref. sec. 3.4.7) V- 174 MArKS

A string is contiguous biock of bytes or words and can used
{0 hold any type of data or information that will fit into bytes or
words. There are number of operation performed with string. The
8086 mMiCrOproCcessor SuUpports sring instruction for string
movernent, scan, comparison, load and store.

MOVS Move Suring.
MOVSB: Move Siring Byte.
MOVSW : Move String Word.

_ The instruction MOVS transfers a byie or a word from the
source siring to the destination string.

— The source must be in the data segment and destination must
be in extra segment.

— The offset of the source byte or a word must be placed in SI
register, which is represenied as DS:SI and ofiset of the
destination byte or a word must be in DI register, which is
represented as ES : DI

— On the execution of this instruction, SI and DI register are
auntomatically incremented by one to point next element of
source and destination.

— If the direction flag is reset [DF=0], the register SI and DI will
be incremented by one for byte move and incremented by wo
for word move.

— If the direction flag is set [DF=1], the register SI and DI will
be decremented by one for byte move and decremented by
wo for word move.

— The DS:SI and ES:DI register must be loaded prior to the
“execution of MOVS insiruction. ‘

— Another way to move a byte or word siring is by using
implicit instrucion MOVSB and MOVSW.

— The instruction MOVSB is used to transfer a byte from source
to destination and the instruction MOVSW is used to transfer
a word from source to destination.

— In muliiple byte or word moves, the count must be loaded in
CX register which functions as a counter.

Operation

Ifbytemovement
ForDF =0 SI« SI+1and DI« DI+1.

For DF =1 SI+« SI-1and DI« DI- 1.
If word movement y
For DF =0 SI« SI+2 and DI « DI +2.
For DF=1 SI & SI-2 and DI « DI-2.
Examples : .
MOV AX, @d:ela
MOV DS, AX
MOV ES, AX
CLD
MOV SI, OFFSET S_STRING
MOV DI, OFFSET D_STRING
Al MOVS S_STRING, D_STRING

B] MOVSB

C] MOVSW
LODS Load String.
LODSB : Load String Byte.
LODSW : Load String Word.

_ The instruction LODS transfer a byte or a word from the

source string pointed by SI in DS to AL for byte or AX for
word. 2

— On execution of a string instruction, SI is amomanedly
updated to point next element of the source strmg

- IKDF=0, mcmglslerSIwnubemcremcmedhy 1 for byte
and incremented by 2 for word.

- IfDF=1, themgis(erSIwillbedectemcmédbylforbm
and decremented by 2 for word.

— In the instruction LODS, the source must be exphcnly
declared either with DB or with DW.

— Another way to load a byte or word su'mglsbyglmphcn
instruction LODSB and LODSW.

— The instruction LODSB is used to transfer astnng byte from
source to AL and the instruction LODSW is used to transfer a
siring word from source to AX. .

— In multiple byte or word loads, the count must be loaded in
CX register which functions as a counter. ;

Operation ks

If byte movement
AL « DS:[ST] .
ForDF=0 SI«SI+1
ForDF=1 SI«SI-1
If word movement
© AX < DS:[ST]
ForDF =0 SI¢SI+2
ForDF=1 Si«SI-2
Example 3
MOV AX, @data
MOV DS, AX
MOV ES, AX
CLD

ES:[Di] « DS:{SI].

MOV SI, OFFSET S_STRING

Er Microprocessors (MSBTE - Sem 4 - Comp.)

Example

A] STOS D_STRING

B] STOSB

(o] STOSW
CMPS Compare String.
CMPSB : Compare String Byte.

CMPSW : Compare String Word.

A] LODS S_STRING

B] LODSB

C] LODSW
STOS : Store String.
STOSB Store String Byte.
STOSW Store String Word.

Operation -

3-27

|nstruction Set of 8086 M'°’°P'°ceas°r

'fl‘be instruction STOS transfer a byte or a word from the AL
for byte and AX for word to dgstination string pointed by DI
in ES.
On execution of a string i ion, DI is ically
updated to point next element of the source string.
If D.F = 0, the register DI will be incremented by 1 for byte
and incremented by 2 for word.

If DF=1, the register DI will be decre:
’ ‘mented by 1 for byte and
decremented by 2 for word. Ay

In ‘the instruction STOS, the source ici
. 5 must be explicitl

declared either with DB or with DW. d
:Anothel: way to store a byte or word string is by using implicit
instruction STOSB and STOSW.
Thc'insfruction STOSB is used to transfer a byte from AL to
destination and the instruction STOSW is used to transfer a
word from AX to destination.

In multiple byte or word loads, the count must be loaded in
CX register which fanctions as a counter.

If byte movement
ES:[DI] « AL
ForDF=0 DI« DI+1
ForDF=1 DI« DI-1
If word movement
ES:[DI] < AX
ForDF =0 DI « DI + 2
ForDF=1 DI «DI-2

MOV AX, @data

MOV DS, AX

MOV ES, AX

CLD

MOV DL OFFSET D_STRING

The v 'CMPS ip a byte or a word in the

source string with a byte or word in the destination string,

The source must be in the data se; tinati ;
gment and- dest

be in extra segment. ¢ i

’me.offseto'fﬂlesoumebyleoraword must be placed in S|

register, which is represented as DS:SI and offset of the

SCAS
SCASB
SCASW

2

1.
2

_ On the execution

— If the direction flag

— If the direction flag is set

2

37

destination byte or & word must be in DI register, which)
resented as ES:DI.
rep of this instruction, ST and DI register gy

sntomatically incremented by one {0 point REXt element of

source and destination. :
is reset [DF=0], the register SI and DI will

be incremented by one for byte comPare and incrementedpg

two for word compare.
[DF=1], the register SI and DI wij

be decremented by one for byte compare and decremented by
two for word compare. 3

_ The DS:SI and ES:DI register must be loaded prior to the

execution of CMPS instruction.

In the instruction STOS, the source must be explicitly
declared either with DB or with DW.

Another way to compare a byte or word string is by using
implicit instruction CMPSB and CMPSW.

The instruction CMPSB is used to compare a byte in source
with destination and the instruction CMPSW is used to
compare a word in source destination.

In multiple byte or word compare, the count must be loaded in
CX register which functions as a counter.

Flags modified : AF, CF, OF, PF, SF, ZF
Operations performed by the instruction :
1.

If [destination string byte/word > source string byte/:
then CF=0,ZF =0, SF=0 g
If [destination string byte/word < source strin
b;
then CF=1,ZF=0,SF=1]

If [destination string byte/word = sou i
then CF =0, ZF = 1, SF = 0 s rsibyseivord]

For byte comparison
i

If DF =0 then ST SI+ 1, DI « DI + 1
If DF = 1 then SI « SI- 1, DI « DI - 1

For word comparison

IfDF:Ot.henSI(—SI+2,DI¢-—Dl+2
IfDF:lthcnSl(—SI—Z,DI(—Dl—Z

Examples

MOV AX, @data
MOV DS, AX
MOV ES, AX
CLD
MOV SI, OFFSET S_STRING
MOV DI, OFFSET D_STRING
Al CMPS §_ST,
_STRING,
B) k D_STRING
q CMPSW
¢ Scan Slrlng
Scan String Byte
The i Scan String Worg
Instruction SCAS g
. an: 3
mALa"dWOFUinAX. S a string byte or a word with byte

T e o o
tination 8tring is pointeq by DI in E§

Flags modified : AF, CF, OF, PF, SF, ZF
Operations performed by the instruction

1.

25 [IfbytcinALorwordinAX<desﬁnaﬁcnsu-ingbymor
woml]!henC'F=l.ﬂ’=0,SF=l

3. [If byte in AL or word in AX = destination string byte or
word] then CF =0, ZF = 1, SE=0

For byte scan

For word scan

Examples

REP : Repeat

Operation

Examples

In the instruction STOS, the source must be explicitly
declared either with DB or with DW.

Another way to scan a byte or word in a string is by using
implicit instruction SCASB and SCASW.

The instruction SCASB is used to scan a byte in string and the
instruction SCASW is used to scan a word in string.

In multiple byte or word scan, the count must be loaded in CX
register which functions as a counter.

[if byte in AL or word in AX > destination string byte or
word]!henCF:O.ZF:O,SF:O

1. IfDF=0thenDI < DI+1
2. IfDF=1thenDI «DI-1

1. IfDF=0thenDI«DI+2
2. IfDF=1thenDI < DI-2

MOV AX, @data

MOV DS, AX

MOV ES, AX

CLD

MOV DI, OFFSET D_STRING
MOV AL, ‘V’

Al SCAS D_STRING

B] SCASB

C] SCASW

The instruction is used as a prefix instruction with the string
 instructions and interpreted as a “repeat while not end of

string” [CX not equal to Zero).

Count for repeat must be loaded in CX register.

While CX # 0
1. Execute string instruction
2. CX&CX-1

MOV AX, @data
MOV DS, AX

MOV ES, AX

NOT_EQU :

STR_EQU :

T—— —— -
Meropmw>
@. Microprocessors (MSBTE - Sem 4 - Comp.) 3-28 Instruction Set of 8086
— On execution of a string instruction, DI is automatically CLD .
updated to point next element of the source string. MOV CX, length of string
~ If DF = 0, the register DI will be incremented by 1 for byte MOV SI, OFFSET S_STRING
and incremented by 2 for word. MOV DI, OFFSET D_STRING
- If DF = 1, the register DI will be decremented by 1 for byte REPCMPSB'orCMPSW
and decremented by 2 for word. REPE : Repeat while equal.
REPZ : Repeat while zero.

- Theinmucﬁonisuseduapleﬁxinmucﬁonwiﬂlmemiﬂg

jons and i d as a “repeat while not end of
sn'ingnndmingeqnal”[CXnoteqnalwlaode’=1]I
Count for repeat must be loaded in CX register.
same hine code for the instruction

A 1,

REPZandl{E’E.

Operation

While CX # 0 and ZF = 1
1. Execute string instruction
2. CX&CX-1

Examples

MOV AX, @data

MOV DS, AX

MOV ES, AX

CLD

MOV CX, length of string

MOV SL, OFFSET S_STRING
MOV DI, OFFSET D_STRING
REPE CMPSB or CMPSW

JE STR_EQU

MOV AX, O1H

MOV AX, 00H

REPNE : Repeat while not equal.
REPNZ : Repeat while not zero. 1

Theinsmlctiunisusedasapteﬁxinmucﬁonwilht!wwing
i jons and interpreted as a “repeat while not end of
suingmdsuingnﬂequal"[CXnotequalmZemand
ZF =0]. : :

Count for repeat must be loaded in CX register. _

same hine code for the instruction

N\ 1,

REPNZ andBREPNE.

Operation

While CX # 0 and ZF =0
1. Execute string instruction
2. CX«CX-1

Examples

MOV AX, @data
MCV DS, AX 4
MOV ES, AX N

icrof instruction Set of 8086 Micropr,
r@MK’fOPmcessors (MSBTE - Sem 4 - Comp)) 229 ;"gﬁw;

D . Eu'np!e 344 W : : e

MOV CX, length of string Wiite assembly language |nstru'c@lons of)

MOV SL, OFFSET S_STRING

MOV DL OFFSET D_STRING
REPE CMPSB or CMPSW
E INE NOT_EQU
STR_EQU: MOV AX,0iH
NOT_EQU: MOV AX, 00H
Example 3.4.1 EETEATETS

BL and CL contain 10H, 10H and 20H
respectively.
te the effect of following instructions.

Solution :

(a) CMPBLCL CF = 1, ZF = 0, SF = 1 as compare

instruction perform non-destructive subtract operation which
indicate BL < CL.

(b) XCHG AL, CL : After the execution AL contain 20H and CL
contain 10H

Example 3.4.2

‘Write ammbiy language instructions of 8066

*(b) Rotate the comanls of AX towards Ieft by 2 bits
Solution :
(a) Add 100H to contents of AX register:
ADD AX, 100H
() Rotate the contents of AX towards left by 2 bits

MOV CL, 2
ROLAX,CL

() Multiplying AL regisier contents by 4 using shift
_ instructions ;
MOV CL,02H
SHL AL.CL
(i) Moving 2000 H into CS register

‘microprocessor t0
(1) Divide the cor
(2. Rotate ihe cO

Solution :
(1) Divide the conitent of AX register by S0H

MOV BL, 50H
DIV BL
(2) Rotate the content of BX register by 4 bit toward lefi
MOV CL, 04H
ROL BX, CL or RCL BX, CL

ent of AX register by 50H 7
ntent of BX register by 4 bit toward leh.

(Example 3.4.5 EE RN LSS j
Write an Instructions of 5086 to perform foliowing operations,
(i) Shift the content of BX register 3 bif toward left.

(i) Move 1234H in DS register. P
Solution :

(i) To shift the content of BX register 3 bit toward ieft

MOV CL, 03H

SHL BX, CL or SAL BX, CL

(i) To move 1234H in DS register

MOV AX, 1234H

MOV DS, AX

Exampie 3.4.6 ERIHEIETS ,

§

How many times LOOP1 will be axecuted in the fohowmq

program. Write the content of AL regisier after the executi

of following program. Of‘
|

MOV CL, 00H ,
MOV AL, 00H

LOOP1: ADD AL, G1H ‘
DEC CL

JNZ LOOP1
Solution ;

‘I:eabo:l program, initial counter value in CL ; is 0 and when
instruction DEC C

e L is executed first time, the value in CL
Hence the Lo

€ P will be executed 25

will be decrementeq from FFH to m?{“me& b
The content of AL ; is
vaiue of AL will go
iteration the Value of

0fm and it is incremented by 1 heace the
M O0H to FFH but afier the last

MOV AX, 2000H - There Sl be 001
MOV CS, AX Ore, the value of AL = oo
~ = and = 00F
OR _ 2 CL = 00H
MOV AX, 2000H Wiio
Write 8085 assembly
PUSH AX g Ianguage,,,s .1 ‘
et] [N o £ truction for the followmgl“]
W MwnmLmsH 4

Microprocessors (MSBTE - Sem 4 - Comp.)

Solution :

(i) Move 5000H to register DX
MOV DX; [5000H]

(i) Muitiply AL by O5H :
MOV BL, 05H
MUL BL

Example 5.4.8 EREANES
Write assembly language instruction of 8086 microprocessor
to
(i) Copy 1000H to register BX
(i) Rotate register BL left four times
Solution :
(i) Copy 1000 to register BX
MOV BX, 1000H
(i) Rotate regisier BL left four times
MOV CL 4
ROL BL, CL OR RCL BL,CL

Example 3.4.9 5%
What will be the content of register AL after the execution of
last instruction ?

MOV AL, 02H

MOV BL, 02H

SUB AL, BL

MUL 08H

Solution :
MOV AL, 02H ;
MOV BL, 02H ;
SUB AL, BL
MUL 08H

Loads 02H byte in AL register

Loads 02H byte in BL Register

Subtract BL from AL, AL becomes 00H
MUL instruction cannot used in

immediate addressing mode

Hence, during the execution of MUL O8H instruction, you

will get the error.

Exampie 3.4.10 [EEATHVE LSS

Write an appropriate 8086 instruction to perform following

operation :
(i) Initialize stack of 4200H
(i) Multiply Al by O5H
Solution :
(i) Initialize stack of 420CH
MOV AX, 4200H
MOV SS, AX
(ii) Multiply AL by 05SH
MOV BL,05H
MUL BL

Soiution :

(i) Multiply 4H by SH
MOV AL,04H
MOV BL,0SH 5
MUL BL

(i) Rotate content of AX by 4 bit towards lcft

MOV CL4

ROL AX, CL OR RCL AX.CL

Example 3.4.12 [IEERIETIS ,
What will be the content of Ionlster BX
instruction ?
MOV BX, 2050H
MOV CL, 05H ae
SHL BX, CL i ; Sehan i1
Solution :
-~ MOV BX, 2050 instruction loads BX register with value
2050H
- MOVCL,05Hi jon load CL register with value 05H
- SHL BX, CL instruction shifis the content of BX register %

toward left by 5 bits as given below.

Shiftleft

X Register = 2050H &————————————

Out | Dys | Dya | Dya | Dia | Dyt | Dio | Do | Ds | Oy | Ds | Ds | Ba | Dy | Dz By | Do | CL=5

olo|1|o|o|ofo|o]|o|1|fof1]ojojoloO

o|lo|1|o|o|ofjo]ofo|1]|o]1 ofjofojojo]} S

ol1|o|oflo|lo|o|o|1]|o|1|o]ojofjojojo} 4

1|o|lo|lo|o|o|Jo|1|fo|l1]o]|ojojojojojo)| 3

ofo|lo|ofo|1]|o|1]|o|lo|lo|jo|ojofojojof 1

o|lofo|o|1]|]o|1|ojofo|o|0|0|0|O]|O|nAma

Hnlllymhﬂx mummmmu

(i)) Rotate the contents of

Solution :

(i) Add 100 H to the contents of AX register.
. MOV AX, 100H

.

© jnstructon Setof B0B6 Microprocesey,
‘ oS

3-31

_ Hence the LOOP! will be executed 5 Tlmes The Value of ¢,

_ The content of BL is ‘0’ and after adding 02H five times the

Solution : At

~ In above program. iniial counter value in CL is OSH gnq

X when the instruction DEC CL is executed first time, the valy,
in CL register became 04H.

will be decremented from 05H to 00H.

content of BL will be 0AH.

Chapter Ends.,,
ooa

UNIT - IV

8086 Assembr"

Programml

Syllabus

Model of 8086 Assembly Language Programs. Programming using assembler : Mlhmoﬂc
numbers, Sum of series, Smallest and Largest numbers from array, Sorting numbers in Ascending
order, Finding ODD, EVEN positive and negative numbers in the amay, Block transfer Stqlng
Reverse, Compare, Concatenation, Copy, Count numbers of ‘1’ and ‘0’ in 16 bit number .

Syliabus Topic : Model of Assembly
" Language Programs

4.1 Model of Assembly Language
Programming

-) (MSBTE - W-15, w-1e.w-17)

programmlng
(Ref. sec. 4.1)

Now, we will see the structure of assembly languagc program
of 8086. The general assembly language programs of 8086 are
given below.

Model 1: Using SEGMENT, ASSUME and ENDS

directives

— In above model, My_Data is T
meqmdecmdmomepmmdmg
i.e. DB, DW etc. i *r'3

— My_Code is the name of lhaeodnqmam d |
of the program or task to perform.

Model 2: Using .DATA and .CODE dir

| o

bly Language Programming

the person is ‘age’ or ‘person_age’.

— So, any variable can be used but meaningful variable names
incm the readability of the program and ease of
maintenance.

The Assembler symbols consist of the following characters.

Upper case alphabets A —-Z Lower case alphabets a—z

Digits 0-9 Special Characters_, @, $, ?

< Rules for variable names

(a) Variable name can have any of the following characters
A-Z,a-2,0-9,_ (Underscore), @

(b) A variable name must start with a letter (alphabets) or an
underscore. So digit can not be used as a first character.

& .
Microprocessors (MSBTE - Sem 4 - Comp.) 4-2 ot i
= . al number whose first digit is a character
~ In above model, .model small indicate memory model to be | — The hexadecimal [¢ start with the digit 0, because the
used in the program. between A 10 F mus!
- e ted as symbol, not
— STACK 100 indicate 100 word memory location are umber like BA, A0, CD etc. are {reé y =0
reserved for the stack. numeric constant.
— DATA indicates start of the data segment where data . al number BA, A0, CD should be
x 2 _ Hence the hexadecim
declaration of the program is made. 5 0A0, 0CD etc
— -CODE indicates start of the code segment by actual code of ptnee ORSE
the program. Examples
— The ENDS directive indicate end of the data and code | Valid Constants
segment and END indicate termination the program. 10101010 : Decimal constant
N Deci t
4.2 Symbols, Variables and Constants 101010100 5 Decihal cons
10101010B ; Binary constant
- Val:iables are symbols whose value can be dynamically | 10101010H ; Hexadecimal constant
varied during the run time. 8965H ; Hexadecimal constant
— The assembler assigns a memory location to a variable, which 0ASB6H - Hexadecimal constant
is not visible for the user directly and translate the assembly :
languag to the.machine languag; Invalid constants
— Variable name should be.selected such that the name reflects | 10102101B ;2 is not binary digit
the meaning of the va.lue it hf:lds. . 09A7 : A is not a decimal digit
_ — For example, a meaning variable name for storing the age of ABCS - treated as symbol

Syllabus Topic : Programming using Assembler

4.3 Programming using Assembler

4.3.1 Addition of Two Numbers -

= (MSBTE - W-14, S-17)

Q.4.3.1 Write an assembly language program to add two

(c) The length of a variable name depends on the assembler,
normally, the maximum length is 32 characters.

(d) There is no distinction between the upper and lower case
letters. Hence, the variable names are case insensitive in
80 x 86 assembly ianguage.

Examples of valid variable
numl, age, my_data, array, result_lsb, count, average, small,
large, next_i, name
total_marks, rate, baud_rate etc.

> Numeﬂc Constants

— The numeric constants can be represented as binary or
decimal or hexadecimal integer.

— The binary numbers must end with the letter ‘B’, the decimal
numbers must end with the letter ‘D’ and the hexadecimal
numbers must end with the letter ‘H’.

— However, the number which does not end with either the
letter ‘D’, ‘B’ or ‘H’ is treated as a decimal number.

— The valid binary constant must have only digit 0 or 1, the
valid decimal constant must have only digit 0 to 9 and the
hexadecimal constant must have both 0 to 9 and A to F.

1. Load first number in AL,
3. Add AL with BL.

Flowchart : Refer Flowchart 1.

16 bit numbers.
(Ref. sec. 4.3.1) W-14,S-17,/4: Marks"
> Program1: Addition of two 8 bit numbers
(@) Assume two 8 bit numbers are stored in AL isters
. i and BL registers
AL =80H and BL = 70H
Algorithm

2. Load second number in BL.
4. Stop.

Load first number in AL

@]‘ Microprocessors (MSBTE - Sem 4 - Comp.

Program 1(a)

.model small i

.code i ; ;

4 mov al, 80H :Load first number in AL
mov bl, 70H ;Load second numbers in BL
add al; bl ;Add AL with BL
ends ;Stop

~ end

(b)

In this program, it is assumed that numbers are available in
AL and BL 50 no data segment declaration is required.

The output of the program can be seen using debugger
program DEBUG.

Assume two 8 bit numbers are stored in memory using
variable name num1 and num2 respectively. Store result in
memory location using variable res.

num1 = 80H and num2 = 08H

Algorithm

198

AR Ot

Initialize data segment

Load first number from memory in AL.
Add Second number with first number.
Store result in memory location.

Stop.

Flowchart : Refer Flowchart 2.

r Initialize data segment I

l

I Load first number in AL I

|

: [Add second number with AL I

!
r Store result to memory J

Cend

In above program, the memory location for num1, num2 and

res will be allocated by the assembler itself, so for that data

segment declaration is required.

So using .data directive, data segment can be declared with
variables required in the program.

In program these variable or constants name can be used to
refer data associated with it. -

Program 2 : Addition of two 16 bit numbers

>
(a) Assume two 16 bit numbers are stored in AX and BX
registers of 8086 CPU .
~ AX =8960H and BX = 7C60H
Algorithm
1. Load first number in AX.
2. Load second number in BX.
3. Add AX with BX.
4. Stop.
Flowchart : Refer Flowchart 3.
Csan)

Load first number in AX

I Load second numberlnBX]

(Stor)

G Program 2@)
Flowchart 2
Program 1(b)
.model small - 3 _'
data : ey
numl db 80H ;First Number d
pum2 db 08H ;Second Number ffndd N o R
resdb ? ;Result Variable ¢ — In this program, it is assumed that numbers are availabl
code : ; > G AX and BX so no data segment declaration is required.
i S T S GUENE | - The t of the be seen usir
: l_my":,%dgw - ;Lnlhdl@hon éf Qa?a,qe“g‘me?tv:‘ : progr:;lntplt)lE I;’UG. program can een using
mov ds, ax G 3 Wk |
mov nl, numl ' ;load 1st number in AL o v

4-4

r Initilize data segment J

[Load first number in AX I

l

I Add second number with AX J

jtion of two 16 bit numbers
“mbgmoroth!n 16 bit.

> Pronrtms Additon

Algorithm

Initialize data segment.
Load first number in register.

Add second number with first number.

Check result > 16 bit if yes, then g0 to step 5 else step 6.
Increment MSB counter. i
Store result.

Stop.

Flowchart : Refer Flowchart 5.

L =

~INOUEOUEFERUN

Initialize data segment
Inttialise MSB Counter

Is
Result Is > 18 bit
? .
Y

Increment MSB Counter

; Whose data type is DW.

Microprocessors (MSBTE - Sem 4 - Comp.)

432 Subtraction of Two Numbon
> (usa'r: 816,517, W-17)

> Progum 4: Submctlon of two 8 blt numbon

(a) Assume two 8 bit numbers are suored in AL and BL mgulen
of 8086 CPU N
AL =80H and BL = 70H

Algorithm

1. Load first number in register.

2. Load second number in another register.
3. Sub second ber from first b

4. Stop. I A
Flowchart : Refer Flowchart6 -

rLoad first nImbor in u

I Load second number In BL J

Flowchart 6

- In this program, it is assumed that numbers are avallable in

AL and BL so no data segment declaration is required.
"~ The output of the program can be seen using debugger
program DEBUG.

(b) Assume two 8 bit numbm are stored in memory using
variable name numl and num2 respectively. Store result in
memory location using variable res.
numl = 80H and num2 = 08H

Algorithm

1. [Initialize data segment

2. Load first number from memory in register.

3. Subtract 2" number from 1% number.

soeé Assembly Language Programp;

V‘I,VEJWNSM-MMW)

4-6
Flowchart : Refer Flowchart 8. Program S(b) k
A : .model small
dita ok
Load first number in AX il dw 8A64H ;First Number R
ey dw 5F98H ;Second Number -
li“d Sscond number in Br] e Dy dwin :Result Variable .
.code : ; .
5 A A om AX mov ax,@data ;Initialization of data segment 1
x|
(sop) mov ds,ax : A
'r.“ mov ax, numl ;load lst number in AL :
= . sub ax, num2 ;subtract 2nd number from 1st number
mov res, ax :Store result from al to memory location.
ends
end

program, it is d that numbers are available in
AXandBXsonodamsegmemdeclamﬁonisrequimd.

- Themnpntofmepmgnmcanbeseenusingdebugger
program DEBUG. G

(b) Assume two 16 bit numbers are stored in memory using

variable name num1 and num2 respectively. Store result in
: y' i using iable res.

numl = 8A64H and num2 = SF98H.

Algorithm

L. Initialize data segment.

2. Load first number from memory in register.

3. Subtract 2nd number from 1st number.

4. " Store result in memory location.

5. Stop.

Flowchart : Refer Flowchart 9.

Syllabus Topic : Sum of Series

4.3.3 Sum Numbers in the Array [SUM of

SERIES] ‘
= (MSBTE - W-14, S-17, S-18)

Q.4.34 Wite an ALP to find sum of first 10 integers. .~ {\

Q.4.35

Q.436

0.437

(Ref. sec. 4.3.3 - Program 6(c)) “al
Ay : S-14:WX16.4 Warks f§

Write an assembly language program to add the | |
series of 5 numbers.
(Ref. sec.4.33) W-14S 1824 Mark
Write an ALP to add BCD numbers in an array of |
10 numbers. Assume suitable array with BCD|
numbers. Store the result at the end of amay. |
(Ref. sec. 4.3.3 - Program 6(c)) FECIETS
Wite an ALP to find sum of series OBH, 05H

O7H, OAH, O1H. (Ref. sec. 4.3.3) ESEZRRIETE

Here we will see the addition of the numbers in the series or
array of n numbers which are stored in the memory.

So, byte or word counter which indicate length of array in the
atcﬂ: of byte or word, is required o read numbers from the

e 1esUl of addition may be greater ghan either 3 bit of 16

bit depending o numbers stored in the array.

The memory pointer mu initi. »
st be initialj rd
from the array of numbers, et to read bye oy

In fOuDng Ppro

numbers, s the sﬁmm, the numbers i the array are 8 bit

bit. m of these numpers may be greater than 8

Ci .

For that we check F, if CF result is greate
15 set, then

bit and €an not store in 8 bit register or Variable.

@.Mlcr ocessors (MSBTE - Sem 4 - Comp.

>

Algorithm

1.
2

©® NN AW

10.

Flowchart : Refer Flowchart 10.

4-7

So another register or variable should be taken to store higher

byte of result as demonstrate in following program.

Program 6(a) : Addition of five 8 bit numbers In
series result may be greater than
16 bit.

Initialize data segment. |
Initialize byte counter and memory pointer to read number
from array.

Initialize sum variable with 0.

Sum = sum + number from array.

If sum > 8 bit then go to step 6 else step 7.

Increment MSB result counter.

Increment memory pointer.

Decrement byte counter.

If byte counter = 0 then step 10 else step 4.

Stop.

Sum of Serles of Byte

Initialize byte counter in CX and memory pointer
In Sl to read numbers from array
Initialize SUM = 0

[SUM = SUM + Number from Array I

Mmtmrypdnhlbvomj
Becrment byts counter by One

4 8086 Assembly Language Prog

2‘ Initialize word counter and memory pointer to read number
fmmmy

3. Initialize sum variable with 0,
- 4 Sum=sum + number from array.

5. If sum > 16 bit then go'to step 6 else step 7.
- 6. Increment MSB result counter.
}\, 7. Increment memory pointer.
- 8 Decrement word counter.
9. If word counter = 0 then step 10 else step 4.
10 Stwp.

Program 6(b)

» Program 6(c):

Initialize data segment.
Initialize byw counter and memory pointer to read py

o~

Initialize sum variable with 0.

Sum = sum + number from array.

Adjust result to BCD

If sum > 8 bit then go to step 6 else step 7.
Increment MSB result counter.

Increment memory pointer.

Decrement byte counter.

10 If byte counter = 0 then step 10 else step. 4.

b G BN S ()

Addition of 10 BCD Numbers in
Serles

3 (MSBTE -5-14, 515, y.y,

Sum of Series of Byte

Initialize byte counter In CX and memory pointer
in Sl fo read numbers from array {

Initialize SUM = 0

| 8UM = SUM + Number from Aray |

Incremenf MSB Counter -

.

Is
Result > 8 bit
?

Increment memory pointer by One
Deoment byte counter by One

- ‘Aﬁertheaxecuuonofdxenbovepmmmmnwmbe
‘lvuhbleinmm_hwmdnm_mabvunblg_

In this program, array consists of ten BCD numbers, so byte
counter is initialized in CX register with 10.
— Then, memory pointer is initialized using SI register.
— The instruction mov si, offset array loads starting offset
address of the array in SI register.

4.3.4 Multiplication of Unsigned and Signed
Numbers

')(MSBTE s-1o)

Q.438 Write an 0
'. numbers; (Ref ec.

0.43.9 Wrileanassembiyl
: two 8 bit number..
.- (Ref. sec.4.34)

@ Unsigned and signed data

- For unsigned data, all bits are intended to be data bits.

— Hence maximum number is 255 in decimal and FFH in
hexadecimal for 8 bit number in binary and 65535 in decimal |
and FFFFH in hexadecimal. ;

— For signed data, the leftmost bit is a slgn bit and remaining
bits are data bits.

— Hence, the range of value that can represent in 8 bit signed
_ number is —128 to 127 and — 32768 to 32767 for 16 bit signed
number.

— For multiplication, the MUL instruction handles unmgned
data and the IMUL instruction handles signed data.

» Program 7(a) : Program . to muitiply two 8 ° bit

unsigned numbers resuit is max.
16 blt.

Algorithm SR
1. * Initialize data segment. \
2. . Load first number. .)

3. Multiply first number with second pumber. SRR
4. Store result. ' A
5. Stop. 2 ; e

>

Case 1 : Both numbers are negative [Signed numbers]
Algorithm ;

) £ 0 D

Flowchart : Refer Flowchart 14.

\ numbers and result will be 32 bit as large as possible.

{

i

{

nitialize data segmenl.

i

~ ;Multiply num1 by num2

"Stotﬁ LSB of result

;Store MSB of result

In above program, num1 and num?2 are two 16 bit unsigned

We will get result in DX:AX registers which are two 16 bit
registers.

Program 7(c) : Program to multiply two 8 bit signed
numbers result is max. 16 bit.

Initialize data segment.

Load first number.

Multiply first number with second number.
Store result.

Stop.

Initialise Data Segment

. I Load ﬂnlt signed number in AL from memory I

Multiply AL by second signed Number
Using IMUL Instruction
]

I Store result from AX to memory I

Flowchart 14

86 Assembly Language Pfogra,n 1
Microprocessors (MSBTE - Sem 4 - Com: 0) 10 ‘ 80 o
Program 7(b) S : — m

. ; .'c:eov' ax,@data ' ;Initialize data segment

y - ax,@ds] ali
| mov ds,ax ¢ ;)
oy al,puml * :Multiply num1 by num2
: imul num2 ; ey ;
| : mov result,ax ;Store result
; ends
end

numbers and result will be 16 bit as large as possible.

We will get result in AX register which is 16 bit register,
The result of above program is 0014H in AX which j
positive.

Case2: One number is positive [unsigned] and anothe

number is negative [signed].
Algorithm
1. Initialize data segment.
2. Load first number.
3. Multiply first ber with second b
4. Store result.
5. Stop.

Flowchart : Refer Flowchart 15.

Initialise Data Segment
Load first signed number in AL from memory

Multiply AL by second signed Number
Using IMUL Instruction

i

l Store result from AX to momoﬂ

Flowchart 15

Program 7(c)(2)
.model small
.data
numl db
num2
result
;-cbde u I
mov ax,@data
- mov ds,ex
' mov al,num] : !
imul num2 ’1
. moy mU_[t'“ . |
s 3
]l
.

~5h 2
db 4h
dw 0

;nitialize data segment
;.Multiply numl by num2

 ;Store result

~ end

|
In this program, numl and num2 are two 8 bit Signeq

@ Microprocessors (MSBTE - Sem 4 - Comp.)

4-11

8086 Assembly Language

In above program, num] is 8 bit signed number and num?2 is
8 bit unsigned number and result will be 16 bit as large as
possible.

We will get result in AX register which is 16 bit register.

The result of above program is FFECH in AX which is 2™
complement of 14H [— 20 in Decimal] as 2™ complement
method is used to rep negative hexadecimal b

Program 7(d) : Program to multiply two 16 bit
signed numbers result is max. 32 bit.

Case 1 : Both numbers are negative [signed numbers]
Algorithm

voR e

Initialize data segment.

Load first number.

Multiply first number with second number.
Store result.

Stop.

Flowchart : Refer Flowchart 16.

Flowchart 16
Program 7(d)(1)
.model small
.data ; '
numl dw —12H ;[-18 in decimal] |
num2 dw —10H ;[-16 in decimal]
res_lsw dw O R
res msw dw 0 J
.code) .
i mov ax,@data ;Initialize data segment
mov ds,ax ; !)
mov ax,numl ;Multiply num1 by num2
imul num2 ,
mov res_lsb,ax ;Store LSB of result !
mov res_msb,dx ;Store MSB of result : 1
i

2 Initialise Data Segment

[Load first signed number in AX from memory I

Multiply AX by second signed Number
Using IMUL Instruction

!

| Store result from AX and DX to memoryl

ends ! i

end

- In above program, numl and numz“u; two 16 bit

numbers and result will be 32 bit as large as possible.

- We will get result in DX:AX registers which are two 16

registers.

which is positive. : 7 . ‘
Case 2: One number is positive [unsigned] and another
number is negative [signed).

Algorithm)

1. Initialize data segment

2. Load first number. g

3. Multiply first number with second number.
4. Store result. e
5

Stop.
hart : Refer Fl

s md first signed number In AX from momoch

Multiply AX by second signed Number
Using IMUL Instruction

]

[S‘lon result from AX and DX to memory

Flowchart 17

Program 7(d)(2)

VIn abt;ve prﬁgmn. numl and num2 are two 16 bit an
numbers and result will be 32 bit as large as possible.
- We will get result in DX:AX registers which are two

registers.)

= The result of the above program is 0000:0120H in DX:AX

H., X

Er L] Microprocessors (MSBTE - Sem 4 - Comp.) 4-12

—~ . The lesuh:fthe above program is FFFF:FEEOH in DX:AX
which is 2 complement of 120H [-288 in decimal].

4.3.5 Division of Unsigned and Signed
Numbers

= (MSBTE - S-14, W-16, W-17, 5-18)

rité"an‘ALi: to divide ‘mo 16 bn'n’ms;gn'ed

me an a&sambly language program to pedorm "
mw byte dmsion of two uns)gnad number. -

i W- 17 4 Marks

=R For. division, the DIV instruction handles unsigned data and
IDIV instruction handles signed data.
- The basic divide operations are word by byte, double word by
word.
— The dividend must be in AX for word by byte divide
operation and DX:AX for double word by word operation as
shown in Fig. 4.3.1(a) and Fig. 4.3.1(b).

Before DX AX Before
LY ;

After DX AX After AH AL

(a) Fig.43.1 (b)
> Program 8(a) : Program to perform word by byte
divigion of unsigned numbers.
Algorithm
1. Initialize data segment.
2. Load first number.
3 - Divide first number by second number.
4. Store quotient and remainder.
5. Stop.

Flowchart : Refer Flowchart 18.

divisor is byte i.e. 8 bit number.

in AL.

8086 Assembly Language Program,m y
Program 8(8) _
.model small :
~d‘m i : e i
" dividenddw 0123h
~divisor db 12
e eeimodb S
_rem db 0
 mov ax,@data :Initialize data segment
moy ds,ax ‘ ;
mov ax, dividend ;Divide word bit by byte
 div divisor
- mov quo,al ;Store Quotient ;|
mov rem,ah ;Store Remainder i
ends ”1
end ;:

— In above program, dividend is word i.e. 16 bit number and|

— Afier division, the remainder is 03 in AH and quotient is 10

Note: Remember that quotient should not greater ma.f
8 bit as AH register is 8 bit which stores quotie
otherwise you will find divide overflow error on the

. screen while debugging or executing the program.

word division of unsigned numbers.

Case 1: Now, Double word number can be defined using two

separate variable name for lower and higher word as
given below.

Algorithm

Initialize data segment.

Load first number.

Divide first number by second number.
Store quotient and remainder.

Stop.

Flowchart : Refer Flowchart 19,

R

Store Quotient

and
from AX ang Remainder

DXlomemo,y

> Program 8(b) : Program to perform double word by |

Er Microprocessors (MSBTE - Sem 4 - Comp.)
—_——c

413

.model small
.data
dxv law

Program 8(b)(1)

dw OﬂTHI].nwerword ofdlv: en
div_msw dw OOOIh ;Higher wozd of dlvidend
divisor dw Ofh

quo dw O
rem dw 0
.code
mov ax,@data; nitialize dala segmem
mov ds,ax fi e
mov ax,div_lsw sload LSW of d.mdend i
mov dx,div_msw :load MSW of dividend . T
div divisor -~ ;Divide double word by word e
mov quo,ax ;Store Quotient e i
mov rem,dx ;Store Remainder
ends L
end

— After the execution of above program, the quotient is 2222H
in AX and the remainder 0001H in DX.

Note : Remember that quotient should not greater than
16 bit as AX register is 16 bit which stores quotient
otherwise you will find divide overflow error on
screen while debugging the program.

Algorithm

“oA W

Stop.

Case 2: Now, Double word number can be defined using single
variable name having data type of DD and can be loaded
in DX and AX using directive WORD and PTR as given
as follows.

1. Initialize data segment.

Load first number.

Divide first number with second number.
Store quotient and remainder.

Flowchart : Refer Flowchart 20.

Initialise Data Segment

[Load dividend In,DX:AXJ

_DMda DX: AX by divisor

Store Quotlent and Remainder
from AX and DX to memory

Flowchart 19

sl
Flowchart 18 \J

Flowchart 20

= Inthlsprogram.mcvax,wordpudmdandmucumm
lowerwordofﬁ:ed:wdendmdmovdx.wotdpu‘dlwz
loads higher word of the dividend.

— The result will be same as that of first case program.

» Program 8(c) : Program to perform word by byte
oulgnodnumhon.

Algorithm

Initialize data segment.

Load first number.

Divide first number with second number.

Store quotient and remainder. 7
Stop.)

Flowchart : Refer Flowchart 21. e .

Cstan) |
MMWWMW
using IDIV Instruction

:
Store Signed Quotient and Signed remainder

bmmvyfmmwhl

Flowchart 21

[

4086 Assembly Language Programpy;
@ Microprocessors (MSBTE - Sem 4 - Comp.) 4-14
‘model small 7
: .dmdi idend dd — 12345H;Dividend as a single variable
123k o : | %
db 12h divisor dw 12
db o quo dw 0
db 0 rem dw 0
Bk ; . .code ¥ ,. ’ |
. mov ax.@d“ta ;Initialize data segment mov ax, @data sInitialize data segment
mov ds,ax |
e e ; mov ds, ax ! &
I mpv a?(,.dxvxdend ;Divide word bit by byte mov ax, word ptr dividend ;load LSW of Dividend |
::.ldxv, divisor 4 : moy d., word ptr dividend+2 ;Load MSW of Dividend -
35tor ti i
'Slo;: g::;ﬂ::;er idiv divisor :Divide Double Word by word
H mov quo, ax :Store quotient
e mov rem, dx ;Store remainder
= In above program, dividend is negative word ie. 16 bit ends
negative number and divisor is byte i.e. 8 bit number. end

After division, the remainder is FD i.e. 2™ complement of 03
[~ 03H] in AH and quotient is FOH i.e. 2™ complement of 10
[-10H] in AL.

So, the microprocessor gives negative result in 2™
complement representation of the corresponding numbers.
The 2™ complement of 03 is FDH and 10 is FOH as negative
numbers are represented in binary as a 2" complement of that
number.

Program 8(d) : Program to perform doubie word by
word division of signed numbers.

Algorithm

A B (5)

Initialize data segment.

Load first number.

Divide first number with second number.
Store quotient and remainder.

Stop.

Flowchart : Refer Flowchart 22.

Initialise Data Segment

I Load signed dividend in D)U\xj

|

Divide DX:AX by signed divisor by
using IDIV instruction

}

Store Signed Quotient and Signed remainder
from AX and DX to memory

Flowchart 22

DX

DX

bit for 16 bit signed number indicati

will be loaded wi

After the execution of above program, the quotient is EFD2H

in AX which 2™ complement of 102EH i.e. —-102E and the

remainder should be 0009H in DX but we will find FFFTH
which is 2* complement of 0009H i.e. — 0009H.

Program 8(e) : Program to perform word by word
[16 bit by 16 bit] division of
unsigned numbers.

As we know that dividend must be 32 bit number if divisor is

16 bit number.

But still, we can perform word by word division of unsigned

as well as signed numbers.

So, the dividend which is 16 bit number must be converted to

32 bit number.

There are two ways as given below :

. By loading DX with 0000H or FFFF depending on Dy

bit of AX and AX with 16 bit dividend.

2. By using CWD instruction.

Nonnally, use second method, because CWD instruction

ex!er'rd sign bit of 16 bit number in AX to DX and maintain

the sign of the number,
:l;cl‘lr':“r‘mlalh;dxyou must know D,‘5 bit of AX is either 0 or 1,
“CiNgly DX must be loaded with either 0000H or FFFFH.

For example

‘:if“AbZ(F 0123H‘ then after the execution of CWD instruction
oaded with 0000H as D bit of AX is 0 which is sign

On number is positive.

execution of CWD instruction
th FFEFH as D bit of AX is 1 which is sigd

gative.

If AX = 8123H then after the

Initialize data segment,
Load first number,
Divi
IVide first number Wwith second number,

Store Quotient and remainger
Stop. .

: 5056 Assembly Languago Progamming,

Microprocessors (MSBTE - Sem 4 - Comp.) 4-15 ‘
> Program 8(f) : Program to perform byte by byte [8

Flowchart : Refer Flowchart 23.

Initialise Data Segment

Load 16 bit dividend in AX
Load DX with O

|

LDivide DX:AX by 186 bit divisor |

|

Store Quotient and Remainder
from AX and DX to memory

Stop
Flowchart 23
Program 8(e)
.model small
.data
dividend dw 1234H
divisor dw 0012H
quo dw 0
rem dw 0
.code A
mov ax, @data ; Initialize data segment
mov ds, ax 2
mov ax, dividend ; load dividend in AX
cwd ;Convert word to double word with sign bit
; DX = 0000H and AX = 1234H
div divisor ; Divide double word by word

mov quo, ax ; store quotient

mov rem, dx ; store remainder

ends

end

— In above program, after the execution of the CWD
instruction, the content of DX will be 0000H as D, s bit of AX
i.e. dividend is 0 and AX will be 1234H.

— The result will be 0102H in AX i.e. quotient and 0010H in
AX i.e. remainder.

— For signed division, dividend or divisor should be taken as a
negative number in a data segment as given below :

Dividend © dw —7123H
OR/AND
divisor dw —1245H

— Then, execute above program with IDIV instruction instead
of DIV instruction, we will get negative result.

bit by 8 bit] division of unsigned
numbers.
As we know that dividend must be 16 bit number if divisor is
8 bit number.) :
But still, we can perform byte by byte division of unsigned as
well as signed numbers.
So, the dividend which is 8 bit number must be converted to
16 bit number.
There are two ways as given below :
1. By loading AH with 00H or FF depending on D, bit of
AL and AL with 8 bit dividend.
2. By using CBW instruction.

q SIS

Normally, use CBW i ion
extend sign bit of 8 bit number in AL to AH and maintain the

sign of the number.

In first method you must know D, bit of AL is either 0 or 1,
accordingly AH must be loaded with either 00H or FFH.

For example

If AL = 23H then after the execution of CBW instruction AH

will be loaded with 00H as D, bit of AL is 0 which is sign bit for
8 bit signed number indication number is positive.

If AL = 81H then after the execution of CBW instruction AH

will be loaded with FFH as D, bit of AL is 1 which is sign bit for
8 bit signed number indication number is negative.

Algorithm
1. Initialize data segment
2. Load first number.
3. Divide first number with second number.
4. Store Quotient and remainder.
5. Stop.
Flowchart : Refer Flowchart 24,

Initialise Data Segment | -

Load AL with bit dividend
Load AH with O

$ I

Divide AX by 8 bit divisor l

l

Store Quotient and Remainder
from AH and AL to memory

Flowchart 24

4-16

: age Programmi
5086 Assembly Langu m

: E_EMWM(MSBTE-&mbC&np.)

= ;Inabo‘vepmgnm,aﬁerthcexocuﬁonofﬂ:;@w
Wm,ﬂn:conlentofAHwiﬂchOHasD,bitofALi.e.
dividend is 0 and AX will be 0023H.

~ The result will be 01H in AL i.e. quotient and 11H in AH ie.

— For signed division, dividend or divisor should be taken as a

ive number in a data se; i

~ Then, execute above program with IDIV instruction instead
of DIV instruction, we will get negative result.

4.3.6 Arithmetic Operations on BCD
Numbers

— We know that, microprocessor perform all arithmetic
Qmaﬁononbimryi.t_:,h:udecimalnnmbem.

- AximmeticopemtionmbequomﬁngonBCDnumberbm
not directly. .

- Suppose,yonwantmnddxwoBCDnumbmi.e.Mandzs,
menywwmgumACHwﬁchhwmgmnﬂL

- _So.to.getcmectmsultinB-CD.youhavelouseme
instruction DAA for BCD addition and DAS for BCD
subtraction.

— Now in above example, the result oflddluon is ACH which
mbeconveﬁedlollZin'decimnlbymingDAAinMon
immediately after ADD instruction.

- The execution of DAA and DAS instruction has been
discussed in chapter 3. : . g

4.3.6(A) Addition of BCD Numbers
..) (MSBTE - w-14, W-15, W-16, 3'17'3'10)

> Program 9(a) : Addition of two 8 bit BCD number
Assume, two numbers are declared in a data segment ag

numl=84H and num2=28H as given in following program.

Algorithm
Initialize data segment.
Initialize MSB counter with 0.
Load first BCD number in AL.
Add second BCD number with AL.
Adjust result to BCD.
If result > 8 bit then goto step 7 else 8.
Increment MSB counter by 1.
- Store result. 1
Stop. : 1
Flowchart : Refer Flowchart 25.

VPN e W~

z Initialize Data Segment
Initialize MSB resuit counter by 0

,Loud first 8 bit BCD number in AL |

[ssem waconmma]

Adjust Result to BCD by
Using DAA instruction

.code

dn; mov res_lsb, al

1

>

»

- Algorithm

1.

w P

N o owos

8.
9.
10. If result > 16 bit then go to step 11 else 12.
11. Increment MSB result counter. '

12. Stop.

moy ix(@da‘l; :

_moy al, numl
add al, num2

taal s 35 e
jnc dn

inc res_msb ;eiqe increment MSB

ends :

end R i

In above program, after the of ADD i the
result will be AC in AL.

But, when DAA will gets executed, the result will be adjusted
to correct BCD resuit as 112 where LSB of result i.e. 12 will
be stored at variable res_lsb and 01 at res_msb.

This result can be checked by debugging the above program.
Program 9(b) : Addition of two 16 bit BCD numbers

As we know DAA operates only on AL onli' which is 8 bit

register.

So, in addition of two 16 bit BCD numbers, ADD and DAA
instructions must be used two time for LSB and MSB
addition of BCD number as given in following program.

Program to ADD two 16 bit BCD numbers

Initialize data segment and MSB byte counter with 0.

Load lower byte of first 16 bit BCD number.

Add lower byte of first BCD number with lower byte of
second BCD number.

Adjust result to BCD. :

Store result of lower byte’s addition.

Load higher byte of first 16 bit BCD number.

Add higher byte of first BCD number with higher byte of
second BCD number.) }
Adjust result-to BCD.

Store result of higher byte’s addition.

Flowchart 27
Program 10(a)
Program
“.model small | :
.data e
~ numl db 85H ;First BCD number
‘num2 db S57H) ;Second BCD number
‘rbesdb 0 ;Result variable
 .code g :
~ moy ax, @dala ;Initialize data segment
mov ds, ax St
Mmbval,numl ;load first number in AL
B subal, num2 ;Subtract second no. from first
. das : ;Adjust result to Correct BCD
* mov res, al 5§ ;Store result
- ends

@r " 8086 Assembly Language Programming
(RS VICIOpIOcoSSors (MSBTE - Sem 4 - Comp.) 4-18 :
2 after the execution of SUB instructiop, n
= ‘;\9‘;‘;8""’ execution of the this program, the result will be | — In this program: S
o ;vhere you will find 9998 in res_Isw and 01 in result will be 2E in AL- .
_msb. AS will gets executed, the result will be adjusgeq
4.3.6(8) Subtracti = BuwtB i AL
- action of BCD numbers 1o correct BCD result & S
f two D
> Program 10(a) : Subtraction of two 8 bit BCD » Program 10(b) : subtraction ©
numbers numbers
Assume to BCD numbers are num1 = 95H and num2 = AL only which is § p;
and num2 = 19H. _ As we know DAS operates only on y is 8 by
Soam ister.
1. Initialize data segment. s .
2. Load first BCD number. _ So, in subtraction of twO 16 bit BCP numbers, SUB and DAg
3. Subtract second BCD number from first BCD number. instructions must be used two time for ITSB and MSB
4. Adjust result to BCD. subtraction of BCD number as given in following program,
5. Store result.
6. Stop. Algorithm
Flowchart : Refer Flowchart 27. 1. Initialize data segment.
2. Load lower byte first 16 bit BCD number. .
3. Subtract lower byte of second BCD number from lower byte
of first BCD number.
4. Adjust result to BCD.
5. Store result of lower byte’s subtraction.
[Load first 8 bit BCD numberin AL | 6. Load higher byte of first 16 bit BCD number.
7. Subtract higher byte of second BCD number from higher byte
[Subtract Second 8 bit BCD number from AL] of first BCD number.
8. Adjust result to BCD.
Adjust Result to BCD by 9. Store result of higher byte’s subtraction.
Using DAS instruction 10. Stop.

Com)

Flowchart : Refer Flowchart 28.

Initialize data segment

[Load LSB of first 16 bit BCD number in AL |

lSubtrac! LSB of Second 16 bit BCD number from Afl

Adqut Result to BCD by
Using DAS instruction

| Store LSB of BCD resutt o memory |

[Load MSB of first 16bit BOD number v AL |

S
ubtract MSB of Second 16 bit BCD number form AL

Adjust Result to B
3 CD b
Using DAS insimcnony

Store MSB of BCD result to memory

Flowchart 28

@- Microprocessors (MSBTE - Sem 4 - Comp.) 4-19 8086 Assembly Language Programming
Propranu 1O _ This can implement by taking either 4 or 5 as addition
‘model small counter in CL for byte or CX for word multiplication.
- If4istakcnasaadditioncoumer,lhen5canbendded4
.data times to get correct result of multiplication as given following
- programs. LS :
e L > Program 11(a) : Multiplication of two 8 bit BCD
num2 dw 099% numbers .
Suppose, two BCD number are 09H and 99H, stored in the

result dw 0

.code
mov ax,(@data;Initialise data segment
mov ds,ax

mov al,byte ptr numl ;Sub LSB first

sub al,byte ptr num2 ;convert result to BCD
das . ’

mov byte pir result,al ;Store result

mov al,byte ptr num1+1

sbb al,byte ptr num2+1 ;Sub MSB next

das ;Convert result to BCD
mov byte ptr result+1,al :Store result

ends

end

After the execution of the above program, the correct BCD
result will be 8001 in result variable.

4.3.6(C) Multiplication of BCD Numbers

Q. 4.3.16 Write an assembly language program to multiply
two 8 bit BCD nos. State result in memory. :
(Ref. sec. 4.3.6(C))

Q. 4.3.17 Write 8086 program o multiply two 8 bit BCD
numbers, draw flowchart give explanation and

comments, (Ref. sec. 4.3.6(C))

The multiplication of BCD numbers can not be performed

directly because there is no instruction available to adjust

result to BCD after multiplication.
— So, the successive addition method can be used to perform
BCD multiplication where we can use ADD or ADC and

DAA instructions.

ple, suppose we want to multiply 4 by 5, the
below.

— For exam| n we
add 4 five times or 5 four times as given

©® N R w N =

10.
11.

4x5=5+5+5+5-

variables num1 and num2.

Algorithm

Initialize data segmeént and MSB result counter with 0.
Load multiplierin Addition counter register.

Initialize result with 0.

Result = Result + Multiplicand.

Adjust result to BCD.

If result > 8 bit then go to step 6 else step 7.
Increment MSB result counter.

Decrement addition counter by one.

If addition counter # O then go to step 4.

Store result.

Stop.

Flowchart : Refer Flowchart 29.

Initialize data segment

Initialize result and MSB counter with O
Initialize addition counter with multiplier

I;sult — Result + Mulﬂpncﬂ

!
r ‘Adjust Result to BCD J

Result > 8 bit
?

er result of Muuﬂlcauog

Flowchart 29 ®

4x5=4+4+4+4+4 OR

. 4@ Jl_Microprocessors (MSBTE - Sem 4 - Comp.)
3 "; - P’ S ll(l_)_ & '

. After the execution of above program the result will be 0891
M 91 will be stored in res_lsb and 08 in res_msb variable,
Program 11(b) : Multiplication of two 16 bit BCD

numbers

Suppose two BCD numbers are 9H.and 9999H stored in
- variable numl and num2. -

Algorithm

Sk MWMmtmdMSB counter with 0.
“ 2. Load multiplier in Addition counter register.
3.’ Initialize result with 0. !
4. Result = result + multiplicand,
5. Adjust result to BCD.
6. Ifresult > 16 bit then go to step 6 elsc step 7.
7. Increment MSW result counter.
8. Decrement addition counter by one..
9. If addition counter # 0 then go to step 4,
10. Store result.
11. Stop. ‘

‘

D,

Initialize data segment

iaize resultand MSB counter with O

= alize addition counter with muttiplier

Initi

Result

Adjust Result to BCD

- Result + Multiplicand

Is

litom result of Mulﬂpiimtioﬂ

Flowchart 30

i Multiplier
: ;Mulliplicand

2 Tniialse data Segment

;Load muli ‘

Q- R el
- Aﬁer the execution of the above program, result will be
89991 where 9991 will be stored in res_lsw and 08 in
res_msb. A ' "

4.3.6(D) Division of BCD Numbers

— Same as that of multiplication of BCD bers, there is 0o
direct instructions are available in instruction set of 8086 for
BCD division.

Step 1: Initialize Quotient Counter Q with 0

Step2:R=11-02=09 IncrementQ=Q+1=1
R > Divisor perfonn subtraction
Step3:R=09-02=07 IncrementQ=Q+1=2 .
R > Divisor perform subtraction
Step4:R=07-02=05 IncrementQ=Q+1=3
R > Divisor |;erfom subtraction
Step 5:R=05-02=03 IncrementQ=Q+l =4
R > Divisor perform subtraction
Step6:R=03-02=01 IncrementQ=Q+1=35

R < Divisor stop subtraction

Compare Divisor with R,

— The value of the Q is 5 which is quotient and the value of
R = 1 which remainder of the division-using successive
subtraction method. ;

— - By writing code using SUB/SBB and DAS instruction, we
can perform BCD division as given in following program..

» Program 12(a) : Division of two 8 bit BCD numbers

Algorithm .

Initialize data segment.

Initialize quotient counter with 0.

Initialize result variable with dividend.

Result = Result — Divisor.

Adjust result to BCD.

_[ﬁcmment quotient‘countcr by L.

If result of subtraction > divisor then go to step 4.

Store quotient and remainder available in lesult.

© ® N9 N R WD

Stop.

Flowchart : Refer Flt;wehﬂZSI. .
Program 12(a) ‘

> PlogruniZ(b):DlVHoqofMoﬁbﬂBCDnumben

OO SVONSUNEREGa 10l

LMOM-I!MrmTI
[t o |
r\.
L“-m-l-ﬂ-w |
L MutﬁnIlthDj

liwmmmmyr,

Flowchart 31

Initialize data segment.
Initialize quotient counter with 0.

Initialize result variable with dividend.

Result = Result — Divisor.

Adjust result to BCD.
lnuemtqmﬁenteonntzbyl
Ifmmltofmbumon>dlmord:engommp4

Store quotient and
mmum:vmlable

’:;sucéssivé Subtraction
~ Methods

Convert quotient to BCD

l Initialize Quotient Counter with 0 l
I Initialize Result with Dlwdand

Result = Ri:r,

@ Microprocessors (MSBTE - Sem 4 - Comp.) 4-23

— After the execution of the above program, the quotient will be
OBH in quo variable which converted to 11 in decnna! using
ADD and DAA instruction,

— Remainder is 00 in rem variable,

Syllabus Topic : Smallest Number from the Array)

4.3.7 Smallest Number from the Array'
' > (MSBTE-W-14)
Q.4.3.18 Write an assembly language program to find ||

smallest number from array‘d 5!
(Ref. sec. 4. a7)

— Array is the set of N numbers i.e. byte or word.
— So, memory pointer and counter is required to read or write
numbers from or to memory location in the array.

12

31 02

02 02

45 02 Smallest mm!;sr
from the Array

65 of5

— . To find smallest number from the array, the numbers in the
. array must be compared with each other as given as follows.

-~ Array may consist of 8 bit numbers ie. byte or 16 bit
numbers i.e. word, so memory pointer is required to retrieve
numbers from the array. L J

— As we know, there are 5 bytes in the array but CPU does not
know.

— Hence one counter called as byte or word counter which
indicates how many numbers are their in the array, must be
taken in the program to read and compare only desued
numbers from the array.

— Following program demonstrate how to use memory pointer
and counter to read numbers from the array.

> Program 13(a): Smallest number from the array of

five 8 bit numbers

Algorithm

1. Initialize data segment. ‘

2. Initialize byte counter and memory pointer to read numbers
from array.

3. Read number from the array.

4. Increment me-mory pointer to read next nqinber.

5. Decrement byte cojmten .

uwmmmnbmmwwiwm_@
E

AT
| Compare number with next number in array :

Y Is
| number < next number
?
y -
2
‘)i'f'v = 3 N
i [Replace number with next number |

Mmmwiwmmmw‘mwmmmmmnnmu

| Store smallest number in memory |

!
4 : Flowchart 33

Smallest number from the array of
five 16 bit numbers.

ol Al

Refer Flowchart 34.

: ﬁmdmnbertromﬂuamyl

[Increment Memory Pointer to point next number by 1 anddsaém-nl
T ;

[Compare number with next number inamray |

[Replace ramber with next number |
=A|

] : :
[Tnorement memory pointer and byte counter to read next number

4086 Assembly Language Programming
=y

: (
@. Microprocessors (MSBTE - Sem 4 - Comp.) 4-26

4.3.8 Largest Number from the Array
= (MSBTE - S-15, W-15, W-17)

0'.:4:.3;19 Write algorithm and assembly language
programming for 8086 to find largest number
among block of data. Assume size = 15.

; (Ref. sec. 4.3.8)
Q.4.3.20 Write an ALP for 8086 to find the largest number
in an array. [Assume array size of 10].
~ (Ref.sec.43p)
Q.4.3.21 Write an assembly language program to find
A largest number from array of 10 numbers.

(Ref.sec. 4.3.8 - Program 14(a))

= The above program for smallest numbers can be use to find
largest number from the array of N numbers, only small
change in the above program is required.

— Simply replace JC instruction with JNC, which will find
largest number in the array as given as follows.

Flowchart : Refer Flowchart 35.

Initialize data segment

mber from the arréy
a): Largest nu of
» Program 14(a) five 8 bit numbers

= (MSBTE - S-16)

Algorithm

1. Initialize data segment.

2. Initialize byte counter and memory
from array.

3. Read number from the array.

4. Increment memory pointer (0

5. Decrement byte counter.

6. Compare two numbers.

U

8

9.

pointer to read numberg

read next number.

If first number > second number then go to step 8.
Replace first number with second which is largest.
. Increment memory pointer to read next number in the array,
10. Decrement byte counter by 1.
11. If byte counter # 0 then go to step 6.
12. Store result.
13. Stop.

Iinitiallze Byte Counter CX and Memory Pointer S! to read number from array]

Read number from the array

[Increment Memory Pointer to point next number by 1 and decrement Byte Counter ﬂ

[

LCornpave number with next number in array

number < next number
?

Iﬁaplam number with next nu l
mber

[meent memory pointer by 1 and decrement byte counter by 1 to read next
number from the g
may|

Is

byte Counter = o
?

Microprocessors (MSBTE - Sem 4 - Comp.) 4-27 °
Program 14(a) 6. Compare two numbers.)
.model small 7. If first number > second number then g0 (0 Step 8.
.data 8. Replace first number with second which is largest.
array db 12h,31h,02h,45h,65h 9. Increment memory pointer to read next number in y
largé T 10. Decrement word counter by 1. .
’ 11. If word counter # 0 then go to step 6.
.code p
! ; 12. Store result.
moyv ax,(@data ;Initialize data segment 13. Stop.
ol Flowchart : Refer Flowchart 36.
mov cx,5 ;Initialize byte counter to read i~ 14)
numbers from array P
mov si,offsef array ;Initialize memory pointer to _data 2 e
read ntimber array dw IZh,31h,02h,45h,65_h
1 dw 0 S
mov al,[si] sread number from the array 0 fars
o € 3 A
dec ex ;decrement byte counter by 1 ek @data ;Initialize data segment
up: inc si ;increment memory pointer mov ds,ax YD el
;to point next number in array mov ¢x,5
emp al,[si] - ;compare numbers to find
Jlargest number mov si,offset array
jnc next ;if it is largest then compare 3
d s mov ax,[si]
;it with e
mov al,[si] ;next number ; up: inc si
next: ;decrement byte counter
loop up .if it is NOT ZERO, compare with oAl
next number in array f:mp axfei]
. 1 jnc next
mov large,al ;Store Jargest number from AL to e i}
ends ;memory variable large - erts =
end Joop up
: mber from the array of e) : G
> Program 14(b): :;arg::tbirt“:\umbers J “mov large,ax ;Store largest numl _be y
i g ends ;memory variable large
Algorithm endi e R R i W
1. Initialize data segment. . — After the execution of above program a and b, the largest

2. Initialize word counter and memory pointer to read numbers

from array.
3. Read number from the array.

4. Increment memory pointer o read next number.

5. Decrement word counter.

number are 65H and 0065H respectively.
— The smallest number will be stored in large variable.

N

5086 Assombly Langusge Progranming,

S

4086 Assembly Language Prograp,,

& Microprocessors (MSBTE - Sem 4 - Comp.) 4-28

Tnitialize data segment

Tnitialize Word Counter CX and Memory Pointer SI 10 rep

Read number from the amay

[Increment Memory Pointer to point next number by 1 and

I Compare number with next number in array l

1 Word Counter by 1 |

Is
number < next number

l Replace number with next number

[H:rement memory pointer by 1 and decrement Word counter by 1 to read next number from the array]

Store Largest number in memory

Flowchart 36
4.3.9 Arrange Numbers in the Array In Descendlng Orde
r

ite an assembly language program 510
ot ds 459 Program 10 5010 numbers in array 1y T > (MSBTE s-1:):
s : Ay ‘g order. Draw the flowchart for it

ding order, check two numbers,

= Ifnuml < num2, then interchan, 'S-16./8 Marks |8

= ge these two numbers,
= estart same for ini A
s g 8 in the
— Passl Amay as shown g follows,

@ Microprocessors (MSBTE - Sem 4 - Comp.) 4-29

—

— Pass2 ;
®] 5 5 o % }
@] mdenge o o4 o : & . ’]
04 04 rodenge m:l 8 6 B
8 % el m:l ® |
ol ol ol o1 - ol |

— Pass3 ,“
(3 (5 % % 5 il
04 modene g4 8 8 08
08 06 - nochange :] 04 04 k
(1<) [1<] : m] (1]
o1 o1 o1 o1 ol [

- Pass4
®) ®) [|
os] noderge o5 (3 ® (03]
04 04 Modene o4 o4 04 4
(] (i oa:l g m] 3 ® 3
o1 o1 01 o1 o1

- We have to repeat the process until we get arranged data in

descending order and for that two counters are required. i
— Where counter, ie. byte or word counter is needed to [[ntiatize “‘:"mm]

compare numbers to find largest among them and counter;i.e.

pass counter is needed to repeat this comparison process.

Algorithm

—

Initialize data segment.

Initialize comparison or pass counter.

Initialize memory pointer to read number from array.
Initialize word counter.

Read numbers from the array.

Compare two numbers.

If number 2 to next number then go to step 9.

Interchange or swap numbers.

© ® N W A B

Increment memory pointer to read next number from
array.

10. Decrement word counter by one.

11. If word counter # 0 then go to step 5.

12. Decrement comparison counter by one.

13. If comparison counter # 0 then g0 to step 3.

14. Stop.
Flowchart : Refer Flowchart 37.

]
[Tinialize memory pointer and inftialise word counter |

Read number from the array

[Increment Memory Pointer to point next number by 1}

[Compare number with next number |

[Swap number with next number |

Increment memory pointer to read next number by 1
Decrement word counter by 1

8 : ; 8086 Assembly Language Prog
e @'Mnmpmeessors (MSBTE - Sem 4 - Comp) =

i ;
] i > Program 15 the loop instruction of 8086, wriyg i =@° Microprocessors (MSBTE - Sem 4 - Comp.)
| . : ‘o a"ange the contents of memory Algorithm
:f E ‘ L - : 3 o 4002H in descending orde. 0 I, Initiak
fos : ‘12h,11h;21h,‘9h 19}. sk art for the same. (Ref. Program 4 5(a) - Initalize data segment.
| g - flowch:) 2. Initialize comparison or pass counter.
| : ,Inm l daln ot = 3 3. Initialize memory pointer to read number from array.
S ' l'°9 10000 ;Initialize data segmen; 4. Initialize word counter.
Jmllallze pass counter e moy ;" ’ 5. Read numbers from the array.
,x.e. ‘com| 50D ler 4 moyv ds,ax 3
pan Counf > L5 o Tnitialize pass counter . 6. Compare two numbers .
mov B ;
: nitialise memory pmnler Y | oy :i.e. comparison Counter 7. If number < to next number then g0 to step 9.
. % lmhahze word counter . 3 | : : 3 8. Interchange or swap numbers.
f upl : : - 4 9. Increment memory pointer to read next number from ‘array.
< <Initiali mory point:
, et ; : ; mov 51,400‘.)“ Jmmme merd 2l pt o 10. Decrement word counter by one.
" ﬁompm two numbers ~ movex?2 ; sInitialize word counter 11. If word counter # 0 then go to step 5.
‘ £ 3 ; e 'h: :nm".m"]: : Ups: T 12. Decrement comparison counter by one.
“ 2 3":""{’?*2] ; .mtmf:nnge nmber X = | _!!lOVHX;[Si]v 13. If comparison counter # 0 then go to step 3.
| : : T cmp ax,[§l+l] ;Compare two numbers 14. Stop.
sincrement memory pomler s | Eadincdne i ;if number > next number Flowchart : Refer Flowchart 38.
) decmmentwoldwumu 5 Saduasau sthen go to dn
sl Othen up e L xchg ax,[si+21 sinterchange numbers
i idecrement pass counter | headal Initialize data segment
| : -xf#Othenupl Ce T R A R a
; i e s e @ | doimesr T increment memory pointer J [Initiaiize comparison counter |
| ER e L R R . loopup ;decrement byte counter |
| Aﬂe - St ey 7 Gy 5if # 0 then up | Initiaiize memory poinlai;and inftialise byte counter |
| = T execution of the above program, all five 16 bit | = dechr . i . *-
L - numbers i.e. word will gets arranged in descending order. s du’bx : ffe:‘";l::m Pais counter [Read number from the array |
| — Same program can be used to arran ¥ : : Tp
| e 8 bit numbe; i = :
| m descendmg order as given as foﬂows T ; s up 1. b [Increment Memory pointer to point next number by 1| ‘
| ; mds e Dy - Aﬂcrtheexecuuon of the this prograru, all five 16
' ~ end [Compare number with next number | numbers i.e. word will gets arranged in ascending order.
I
i &
|
1‘ Syllabus Topic : Sorting Numbers in Ascendmg Is
| — and Descending Order Number < Next number
i . = ?
| 4.3.10 : 1
! Arrange Number in Ascending Order N |
A | Swap number with next number
| P (MSBTE - w14, 5-15, W-15, -“)‘ E T
i
| In nt memory pointer to read next number by 1
; array 015 bly language program to sott O Decrament byta counter by 1
i i elernents In ascending order. Also.
! (Ref 1art for the same, ;
i 25 v, 8ec.43, 10) Is
f rite.

byte Counter =0
?

N ALP for gogg rrav‘
ascengj to sort the a

10 0rder. Dray fiowchar, [Assume T
(Rel.sec 43,10 [T

AN ALP 16 g1 2n array of 10 numb
,‘I'.

I
I

AN8E nuppye, y
::ﬂn.e. for byte an d:] amay jp ascending order, lh:d’bo f
ingtr eCuted by e ;)rd Program for descending ©
structiop, Placing JNC instruction Wi

SRS, ! ek .
: . dscendip, We will in amdy —
i , “’dmszivenasffﬁw?e numbers in 7%

4086 Assembly Language Prog,amml

s PREE s orocessore (MSBTE - Som 4. Comp) 432 g Odd and Evenm __ Microprocessors (MSBTE - Sem 4 - Comp.) 433 8086 Assembly Language

? Fin e Saays
| A i bt - syllabus Topic : in the Array Flowchart : Refer Flowchart 39, 4.3.11(B) Test the 16 Bit Number for Odd or
J ' i : Even . .

3 (MSBTE-5-14,517)

 decrement byte counter if # 0 then up —— =

;qecrment,pus counlex; if # 0 then upl A5 Finding odd and Even Numbers in th‘

Array —_—
Wite an ALP 1o check a number to be Opp

Initialize data segment
Load number in AL

Algorithm ‘

1. Initialize data segment,
Load number in resister.

Q.4.3.28

2
(Ref. secs, 43.11(A) and (B)) ”* Wark Rotate AL toward Right by 1 bit 3. Check number is odd or evea.
an ALP to compute, yhotnar e Numbgy lo/Checkinumber 4. If number is odd then store result to odd.
5
6

2 (MSBTE-S-14) | |4 4929 erite i von or oo . ! :
T - z re T
_,0‘.‘4._3.27 Write an ALP to arrange any.array of 10 bytes in : (Bnef gets 4311(A)and (B). § M3 . Store result to even. :
bzt an ascending order. Also draw the fiow chart for : ; AT 4 . Stop. 3
| ~ the same. (Ref. sec. 4.3.10 - Program 17) — o 8 bit or 16 bit number, the Do bit decides either numbegj; - o : - |
| ; : W odd or even because the weightage of Do bit is [je, odd N Y Flowchart : Refer Flowchart 40. 5 4 |
; : value and the weightage of D1, Dz -..Dys bits are 2, 4,3 ; |
{ Flowchart : Please Refer Flowchart 38. i.e. even value. . |

_ When we add two even Or odd numberg then result is alwayg ; . Initialize data se, !
Program even, but when we add odd number with even, then resulyy Siore Exgxy;moer 2|0 O"I')eomr::;ymber ¥ e ¢
model small : always odd.
data _ That's why, when Dy bit of any number is 1, then that number l J _Load nurnber in AX
sh is odd and if 0 then number is even. . :
- array dw 9,6,826,73424 — To test any number for odd or even, check Dy bit of tha Stop Rotate AX toward Right by 1 bit
| «code : - number. ‘ 1o Check number
| hoviex (@data;Initalie data segment — To check Dy bit of any number, rotate the bits of that number Flowchart 39
1 S eadE i toward left by 1 bit using rotate instruction i.e. ROR or RCR ; i
It ¢ movdsax ; as shown as follows : > Program 17
~ movbx10 ;Inilialize pass counter [SO oeniction .medel small :
| ; : £ - N Y
’:!lpl-“ ; [D1[D.I Dsl D‘] D:,I 02| D,] D‘7 .data «
| - movsioffset array ;Initialize memory pointer Weightagpe 128 &4 32 18 8 4 2 1 num db 8%
‘\ . mov cx,9 ;Ini;iaﬁzg word counter odd -db O Store EVEN Number to || Store ODD Number to
3 ROR Instruction S adb 0 _memory memory

]

/O
EOEETesa E] w
32 18 8 4 2 1

Weightage 128 i l .
3 mov ax,@data ;Initialize data segment : |

;Compare two number

! ;if number < pext number = Then Dy bit goes to th . - mov ds,ax

| X : e carry flag, hence by checking . g chart

} ; then go to dn . : gaﬁ;e ":mber'Can be tested for odd or even. It is demonstrated moy alnum ;load number in AL i %

sinterchange numbers ollowing program, X ror al,1 . srotate number by 1 bit toward left - > NBrooremite
- ; . model small ©

! : 4'3'11(A) Test the 8 Bit Number for Odd or jmoda Skt e ol SE o

| sincrement memory pointer Even il rol al,1 ;if 0dd, then restore the number A

f sdecrement word counter mov odd,al ;store in memory variable odd ! .

1 if#£0 thenrup‘ Gl o =» (MSBTE - S-14, s7) jmp eﬁt ;jump to end the program 3

SN ; i i
~jdecrement pass counter l l:m FRSEOT ;else restore number - G
[; tiali 2 f e o \
e Obeu il 2. Load nz:md;;a Sl moy even,al ;store in memory variable even: | .

| T e : Tin resiste, : R ;

\ 3 : T

‘ K number ; exit : ends 3
| ; 4 15 0dd or ;

§ If number i odd th S nd ’
e 3. Store res N store resuit to odd | ’ i be:
i 6 Stop Sult to even, { _ After the execution 9f the above program, the given number

; \ i | i.c. 89H is tested and itis stored to memory variable odd.

.

4-34

3086 Assembly Language P'°9'a’"rnin

,check number odd or ?vén, v
‘odd, then restore the number

jstore in mémory variable odd
 sjump to end the program
~ else restore number

;store in memory variable even.

After the execution of the program 18, the given number i.c.
8988 H is tested and it is stored to memory variable odd.

So this logic can be used to count how many odd or even

numbers are present in the array.

4.3.11(C) Count Odd Number in the Array of

16 Bit Numbers
=» (MSBTE - W-15)

4.3.30 Write an ALP for 8086 to count the number of
: odd numbers in array. [Assume array size of 20
_number] (Ref. sec. 4.3.11.(C))

When we consider array of byte or word for any operation,
then memory pointer and byte or word counter is always
required.

In foll g program SI register is used as a memory pointer
and CX is used as a word counter which used to read desired
numbers from the array.

Algorithm

Flowchart : Refer Flowchart 41. ;

Initialize data segment.
Initialize ODD_counter to 0.

Increment word counter.

Initialize memory pointer to read number,
Read number.

Check number for ODD.

If number # ODD then go to step 9.
Increment ODD_counter by 1.

Increment memory pointer to read next number,
Decrement word counter by one.

If word counter # 0 then go to step 5.
Store result.
Stop. ~

Tnitialize data segment

0oDD Counter to Count
Inm:gjzumbers in the array

rd counter in CX

wo
Intlielize ry pointer in SI

and memo!

Read Number from array to AX

Rotate AX by 1 bit to Right

l Increment ODD counter by 1 j

Increment memory pointer by 2
Decrement word poinier by 1

Is
Word Counter = 0

Flowchart 41
> Program 19
.model small
data
ﬂrray dw]34h,65h,876h,976h,23|‘
~oddno gy g
«code -
100V ax,@data; Initialize
e 1ze data
- Mov dsax P
i moy ox,5 ; SRR
iy S initialize yorg counter
10llset arrg sInitials
o Y SInitialize memory pointer
e
H ead number from array
iCheck number for odd
U number i odd

}lCrement odd counter

8086 Assembly Language ngfﬂfﬂ"!l

Microprocessors (MSBTE - Sem 4 - Comp.)

add si,2 ;i y poi
3 P
loop next;decrement word counter i

U

ends

end {
- In above program, array contains two odd numbers.

result 02h in memory variable odd_no.

» Program 19(a)

Hence after the execution of above program, we will get the

<> (MSBTE - 5-14, W-16)

from one location to another focation.

(Ref. Program 19(a)) AR

Q. 4.3.31 Write an ALP {o transfer block of 10 numbers

Program
.model small

.data
sre_arr dw 1,2,3,4,5,6,7,8,9,10

dst_arr dw 5 dup(0) ;Empty array

.code ;
mov ax, @data :Initialize data segment
mov ds.ax {
mov cx,10 :Initialize word counter
mov si.offset src_arr ;Initialize memory pointer
; source
mov di, offset dst_arr ;Initialize memory pointer for
up: ;destination

mov ax,[si] sread number from source array

mov [di],ax ;write number to destination
sarray
add si,2 . ;increment source memory
pointer
add di,2 sincrement destination
memory pointer
loop next icheck ~ word counter for
; if not zero then read next
< ;number from the array.
ends
end

4.3.11(D) Count Even Numbers in the
Array of 16 Bit Numbers

Above program for counting odd numbe:

JNC instruction with JC instruction.

-~ In following pro;
and CX is used as

zero,

for

= rs in the array can be
used to count even numbers in the array by simply replacing

gram SI register is used as a memory pointer
a word counter which used to read desired

4. Initialize memory pointer to read number.
5. Read number.

6. Check number for EVEN.

7. If number # EVEN then go to step 9.

8. Increment EVEN_counter by 1.

9. Increment memory pointer to read next number.
10. Decrement word counter by one.

11. If word counter # O then go to step 5.

12. Store result.

13. Stop.

Flowchart : Refer Flowchart 42.

|
Wiﬂanze data segment |
v

Initialize EVEN Counter to Count
odd numbers in the array

!

Initialize word counter in CX
and memory pointer in SI

r___———

r Read Number from array to AX]

[Rotate AX by 1 bit to Rightgl

\7

[Increment EVEN counter by 1 l
—A
3
Increment memory pointer by 2
Decrement word pointer by 1

Is
Word Counter=0
?

» Program 20
.model small

numbers from the array. L v
Algorithm amay dw 134h,65h,876h
1. Initialize data segment. ;e:::;nq e dw 2
2. Initialize EVEN_counter to 0. i s
3. Increment word counter.

—7
5 ' ;Initialize word counter
mov si,offset array ;Initialize memory pointer

@’ Microprocessors (MSBTE - Sem 4 - Comp.)

_ ;Read number from array
;Check number for even
;if number is even

sincrement even counter

;increment memory pointer
;decrement word counter

Toop next

S

end

= Aﬁ.er the.: execution of the above program, the result is 03
which will be available in memory variable even_no.

> Program 20(a)

- ngram to find number stored at memory location 1D0O0SH
__isodd oreven.

Given : 1D005H = 8 bit Number

S!pre Resultin: 1D006 = if number is even
Bl else 1D007 = number is odd
MOV AX, 1D00OH ; Initialize.data segment
MOV DS, AX

MOV AL, [0005H]
MOV BL, AL

ROR AL, 1

JC DN !

MOV [0006H], BL

JMP EXIT

DN: MOV [0007H], BL
[EXIT:

; Load number in AL
;Check no is odd or even

;Store no in memory

4.3.11(E) Addition of Only ODD Numbers in
the Array

embly Language Pro
& 8086 ASS! gra’"min
4 - 5
iy absl] . Check number is ODD or oy
7 rorabl \
jnc dn P ﬁ-number is ODD then store in ,
rolallily e *other amay ,
’ A . [ncrement counter by 1 '
inc cou! ’
mov [di.al
inc di
dn:
inc s
Joop up- ; decrement byte counter by] i nm,

b

mov cx,count
next: mov al,[si]

inc si
loop next
ends

end

4.3.11(F) Addition
the Array

= (MSBTE - W-14)

Q. 4.‘3.32 Write as assembly language program to add only
S - odd numbers in the list of following element. 6, 5
21,3, 8,9. (Ref. sec. 4.3.11(E)]

— Here we must separate the odd numbers from i
the |
we can add all the odd numbers. KRk

;;l_nodel small
data
~ ar db 6,521,389
arr_odd db 6 dup(0) ;Array to store odd numbers
~count dw 0

~sum db 0

; result of addition of ODD nos,

; Initiali

of data

; Byte Counter = 6 as
~ sixnumbers in list
. 5 Initialize memory poi
sradise Mo R point
- mov dioffset arr_odd L5 e

.model small
.da_la : Y
arr db 6,521
count dw 0
sum db 0
.code :
mov ax,@data
mov ds,ax
mov cx,6

mov si,offset arr

up: moy nl,[si]
roral,]

jedn
1ol al]
inc coypt

. mov [di] g)
inc dj

inc i
loop up

gy, ©€X,couny

mov di,offset arr even

zero then go fo up

mov sioffset arr_odd i

add sum,al . Add all odd numbers in ODD array

of Only EVEN Numbers in

‘

Here we must separate the even numbers from the list and
then we can add all the even numbers.

13,89

arr_even db 6 dup(0) ;Array for even numbers

; result of addition of EVEN nos.
3 Initialization of data segment

; Byte Counter = 6 as
six numbers in list
; Initialize memory pointers

3 Check number is

EVEN or not

il number js EVEN then store if
» another array
i Increment counter by 1

i decrement byte

> Sounter by 1 if not zero
3 then go 1o up

@0 Microprocessors (MSBTE - Sem 4 - Comp.)

\

4-37

moy si,offset arr_even
next: moy al,[si] 5

add sum,al

inc si

loop next

ends

end

; Add all even numbers in EVEN array -

Syllabus Topic : Finding Positive and Negative
Numbers in Array

4.3.12 Finding Positive and Negative
Numbers from the Array

— In 8 bit or 16 bit signed magnitude number, the most
significant bit indicate sign of the number i.e. D; or D;5 as

shown Fig. 4.3.1(a). 8 bit signed number

) S I

Sign bit

16 bit signed number
[DEID“I """""""""" I D1|Dol
Sign bit Fig. 4.3.1(a)

— Hence, by checking most significant bit, we can find out a
byte or word is positive or negative number.

— - Most significant bit i.e. D; or Dys for byte or word can be
checked using either ROL or RCL instruction as given in
Fig. 4.3.1(b).

L
-

RCL Instruction

A
[CF W|DGIDEID‘IDSID2|D“DLI

ROL Instruction

Fig. 4.3.1 (b)
checking odd or even number can be used
by replacing ROR or RCR instruction with ROL or RCL
instruction to check either number is positive of negative.
The following program demonstrates how to number for sign

— The program for

i.e. positive or negative.
4.3.12(A) Test the 8 Bit Number for Positive or
Negative

Algorithm
Initialize data segment.
Load number in resister.

1

2. .

3. Check number is positive or negative.
4. positive then store result to positive and goto

8086 Assembly Language Programming

Flowchart : Refer Flowchart 43.

Y
ore Negative Number to
memory

@

Store Positive Number to
memory

.
Flowchart 43
» Program 21

.model small

data A
num db 8%h
pos db 85520
neg db 0

.code : G
mov ax,@data ;Initialize data segment
mov ds,ax ; Bt
mov al,num ;load number in AL .‘ !
rol al,1 srotate number by 1 bit te
jno dn ;scheck nlmibelj posil
‘roral,l ;if negative, Iﬁcu:;u_;a
mov neg,al ;store in memory vari
jmp exit ;jump to en(d“‘ihe pmgmln

dn: ror al,1 élpe mﬁwré number :
moy pos,al ,slmé‘i;i memory v

exit : ends e
end

— After the execution of the ébove ,- gram, the given
i.c. 8%h is negative as D bit is 1 and it is stored to memory
variable neg.)
4.3.12(B) Test the 16 Bit Number for Poslitive
or Negative

Algorithm

1. Initialize data segment.

2. Load number in resister.

3. Check number is positive or negative. -

4. If number is positive then store result to positive and goto

step 6.
5. Store result to negative.
6. Stop.

If number is

step 6.
5. Store resultto negative.
6. Stop.

3 umber. el g
¢ KW +POS] then go to step 9.
; .t POSITIVE_counter by 1.
Increment memory pointer to read next number.,
. Decrement word counter by one:
; mm,omengotos(eps.

Initialize data segme!

M;‘If;POS “;":e' :"g‘;““’ 3 / In above program, array contains three positive numbers i.e.
1 134h, 65h and 23h as D5 bit of these numbers are 0.

Hence after the execution of above program, we will get

result 93h in memory variable pos_no.

 Initialize word | .
e o o - 4.3.12(D) Count Negative Numbers In the
. = Array of 16 Bit Numbers

Read Number from array to AX ‘- ; . — ' Above program for counting positive numbers in the array
can be used to count negative numbers in the array by simply -
replacing JC instruction with JNC instruction. i

- In following program SI register is used as a'memoty pointer
and CX is vsed as a word counter which used to read desired
numbers from the array. - :

Algorithm

Initialize data segment. ;

Initialize NEGATIVE_counter to 0.

Increment word counter. e

Initialize memory poiater to read numbe;

Read number. X

Check number for NEGA:lT_\’E.’]

If number # NEGATIVE then go to step 9.

Increment NEGATIVE counterby 1.

Increment memory pointer to read next number.

Decrement word counter by one. ;

. Tf word counter # 0 then gotostep'

12. Storeresult
13. Stop.

 Flowchart : Refer Flowchart 46.

=IO S 00N~V HON LAt B B WA S

=
)

8086 Assembly Language P'°9ram r

I@' : : : 4
Microprocesso 5 . 4-40 n go 1o Step -
| —r s (MSBTE - Sem 4 - Comp.) counter #0hen £ @ Microprocessors (MSBTE - Sem 4 - Comp
| e e g If word] 4-41 8086 Assemb
el e at ;if number is negxt:ive 3 v e e s = 3
) : . Stop.) 4.3.13(B) Using String Instru v e
S 9 Rl Flowchart 47 g ctions > Program 26(a) s i
oaih => (MSBTE - W- ~ Program to transfer 10 byte data from base of data segment 4
8 : (L AL AL base of extra segment. Data segment base address is 2CO000H.
sincrement memory pointer Q.4.3.34 Write ALP and draw flow chart to perform block Extra segment base address is DEOOOH.
;dec‘remenl word counter i transfer without using string instruction. ~ Refer Algorithm and flowchart of program 25 ;
(Ref. sec.4.3.13(8) [HEASIORIEIETE || MOVAX,2C00H ; Initialize data se
cX S e |
s : ntalize Word Counter in S Now e : MOV DS, AX i |
I S % : Pointer for Source armay in ST > 1l see the program for block transfer using string [N
m‘r;‘;%mmh asl;‘)t a;':zfc&nmgs tw:e posm\;e numbers i.e. 876h : m:]au;e m":Pol:th for Destination Array in DI instruction i.e. using MOVSW instruction, MOV AX,DEOOH .Im %
1 > ¥ St e ; % - For MOVSW instruction the default i f MOV ES, AX : i 1
| 5 — Hence after the execution of above program, we will get the " memory pointer for 35]
| result 02h in memory variabl : Nomber from Source Array Using source and destination blocks are DS:SI and ES:DI | MOV SI, 0000H ;Initialize : i
Ty € neg_no. Read Memory Pointer SI to AX respectively. : MOV DI, 0000H - 3 : = ‘i
— Following program demonstrate, the block transfer using - Initialize
Syllabus Topic : Block Transfer simple MOVSW instruction, MOV CX. Q00AH S i e s
Aok UP: MOV AL, [S1] ; Transfer
Cop e e ey T R MOVES{DI,AL ;todestination |
4.3.13 Block Transfer Using Memory Pointer 1. [Initialize data and extra segment i.e. DS and ES. INCSL ‘ ; Inc: . mem |
— Assume a block of data on N number i stored in a memory. 2. Initialize word counter. INC DI Y ‘
~1 N"“’_ this block of N numbers is to be moved from source Increment Source Mem::ry Pointer S by 2 3. Initialize memory pointers for source and destination array. LOOP UP S ;Check counters= o 2 : 1
locations to other part of memory i.e. destination locations. l"mmgéco.,;::::j Woxegoﬁt:f lg;e{ Diby 2 4. Read number from source array. ENDS : A 3
= : .lf.d_ze .numl?er of bytes or words N is 5, then we will have to 5. Copy it to destination array. END
initialize this as byte counter or word counter in CX register. i inati ‘
5) 6. Increment memory pointers for source and destination array
— Then two memory pointers are required to point source block o > Program 26(b) :
and de§tiqaﬁon block, hence we can use SI and DI registers Is ; Using string instruction, write an ALP to transfer a block of
respectively as source and destination memory pointers. Word Counter = 0 7.1 Decrementword counter byjone: 1 Kb of data stored at location 1000H onward to location
~ Then block can be transfer from source to destination either ? 8. If word counter # 0 then go to step 4. 4000H onwards in the data segment
usl;g string instruction ie. MOVS/MOVSB/MOVSW. or 9. Stop. MOV AX, 1000H ; Initialize data
ut usi ing i i ; 2 e
| Rl S AR s sech, & Teple. MOV Flowchart : Refer Flowchart 47. : 'MOVDS/AX. it
[— Two array must be declared in the array where in one array » Program 26 MOV AX, 4000H ; Initialize Extra segm
actual numbers are stored and another array must be empty. Rt 47 RS MOV ES, AX T
| = Todeclare empty array, we can use DUP directive, > Program 25 s : MGV SI, 0000H ; G
| =) example, 5 dup(0) statement allocates five memory | .model small i daia : : , MOY. DE, 000K o
| location and initialize them with 0. . it & src_arr dw 1234h,4321h,7894h,9658h,45ABh 3 MOV CX, 03FFH
| . 4.3.13(A) Without using Strin ’ : UP: MOVSB s
| g String Instructions e dw 1234h, 4321h, 7894h,9658h,45ABH | il LOOP UP ' EE
| > ™ . tam dw Sdup(0) . .code ' s 1
el — , : (MSBTE-S-17) | S PO) - sEmpty array : > Program 26(c) : Overiapping Block T
©Q.4.3.33 Wite an ALP 1o transfer 10 bytes of data from i : moviex, Qe <> (MSBTE - S-15)
| | one memory location to ancther. Also draw the g slnitialize data segment & mov ds,ax slnitialize data segment : = : T
. R flow chart for the same. ‘ - moy ds,ax it s sament Q.4.3.35 Write an algorithm to transfer
’ st (Ref. sec. 4.3.13(A)) m mov cx,5 Titiali o i e i ‘ ~ the source address to desti
2 ; . siiialize word counler 5 5 ;Initialize word counter ¢ vice versa [Overlapping block
= First we will see the program for block transfer without usin e iInitialize memory e dis e (Ref. Proér[am 260
string instruction i.e. using simple MOV instruction, d] s mov si, offset src_arr ;Initialize memory pointer for ef. 2 3
| = F_ollowing program demonstrate, the block transfer usin oy di, offee dst o .p omter for source jsource R d Algorithm
\ simple MOV instruction. Bl St & sInitialize memory pointer for (o ; L
fif Algori ! ; aatinat: ; ‘mov di, offset dst_arr ; Initialize memory pointer 1. [Initialize data segment g
f;) lgorithm) < oy ax,[si] sread Srnanation e e nnation 2. [Initialize word counter. -
1. Initialize data segment 5 mov [di] ax S fumber from source array ; 7 | 3. Initialize memory pointers for source and destination array at ;
2. Irutlahze word counter. . s ¥ y.Wnle number to destination array up : movsw :Transfer word from sourcf tolie e
3. Initialize memory pointers for-source and destination array add di2 v‘lncremem Source memory pointer Gy LGl fmm SoUNCe Aoy S {0
4. Read number from source array. g : A 1 . iincremeny destinati “sointer | . destination 5. - Copy it to destination array.) o
5. Copy it to destination array. 9P hext icheck wq i A0 emoRrh ! 6. Decrement memory pointers for source and destination array .
6. Increment memory pointers for source and destinati ¢ g 31f not zerg }clounter for zero, ! loop up 3 for next number.) . :
for next number. on array : G then read next i ¢ | 7. Decrement word counter by one. 3
7. Decrement word counter by one. ' ends o tfrom the array, fa - 8. If word counter # 0 then go to step 4. i
end end ‘ : ' 9. Stop.

’

of Two Strings
85

$

: — sists of either numbers or ch S
- The ;mng.conmg must be declare in quotes je ¢, 1|
assembly,ﬂICS. diy Cag |

" string must end with $’ sign. .
The data type of the string is always byte becauge assemy,

store ASCII value of every character of string in memoy
ASCII codes are 8 bit)

Information technology$’ -
— Assembler stores string characters in memory at consecutiy,
memory locations. 3
~ Hence to perform any string related operation such g
comparison, length, reverse etc., the memory pointer and byte |
counter is required as we have seen in block transfer Program,
— Now, we will see how to compare two strings either w.m |
using or using string instruction. P
- For comparison, the string instruction is CMPS or CMPSB o
CMPSW. "‘
~ But, normally we use: CMPSB instruction for string.
comparison as data type of string is byte if it is ‘specifieding. \[
quotes. Simple CMP instruction also can be used to compare .
|
|

two strings.

4.3.14(A) Without using St'rlng Instructions

|
= Fintwe will see the program for comparison of two strings i
WIthont using string instruction i.c. using simple ‘
Instruction, . |
Following |
instruction,
::n .:::’ ”" of string by checking length of both

v

Progam. demonstrate, the using simple :

Microproc 3 - Gonp).
@ croproeessprs (MSBTE - Sem 4 @mp.).

Flowchart : Refer Flowchart 48,
(Csan)

Initialize Data Segment
Imunllzamnofypoimrhﬂwwh.smmo
for source string

| Read character from Source string]

is
Character = '§' |.e.
End of string? _

Increment length_S counter by
Increment memory pointer by 1

Initialize memory pointer in Di and iength_D counter with 0
for Destination siring

|Read character from Destination string|

Is
Characier = '$' L.e.
End of string?

Increment lenth_D counter by1
Increment memory pointer by 1

;;E.Mmmon(usm Sem 4 - Comp.) 4-44

Aﬂarlheexecuuonoftheabovepmgnm the message

are same’ will displayed on the screen because
lengthnfbmh!hestnngsmm
2. Mmﬂlﬂ’lngbych.ekmghngﬂl“
character with case.

Algorithm

1. Initialize data segment.

% Fmdlhelmgtlmfsmm:estringr

3. Find the length of destination string.

4. Compmlengthofmmesu'ings.

3. Iflength of both string are not same then go to step 10.
6. Compare string character by ch

7 il;chmctasofboﬂ:ursuingsmnotsameﬂlenzowswp

8. Display message ‘Strings arc same’.

9. Stop.

10. Display message “String are not same".
11. Stop.

Flowchart : Refer Flowchart 49.

Initiaiize memory pointer in S| and length_S counter with 0
~ for Source string 4

bmmtm D counter by
Increment memory pointier by 1

S

Flowchart 49 cont.....

ry Pointer for Source array In S|
Mamol ,y Pointer for Destination in DJ
Initi lez:m;)l:: Counter with length of Source / Destinatjoy,
jal

Is
Source Char. = Destination Char
?

Increment Memory pointer for Source
and Destination by 1 respectively
Decrement Byte Counter by 1

> Program 25 i

N Is
Byte Counter = 0
?

Y
lDlsplay 'Strings are Same' Messag?l

Display ‘Strings are not Same' Message

Flowchart 49

'COMPUTERs’
meutert'

Microprocessors (MSBTE - Sem 4 - Comp
mov si,offset str_s

next: mov al,[si] |

cmp al,'$’
je exit n
i destination -mng
inc si i ,else increment memory point
inc'count_s ;increment counter to count
; length of string

Jjmp next ,)ump to read next character

exit: 4

;===—--Count length of the Destmaﬁmr smng—-x—-—-—
mov sioffset str_d ;Initialize memory ptr for

; destination string
nextl: mov al,[si] ;read charac!erﬁom the
; destination stnng
cmp al,'$’ ;compare with$
Cjeexitl ;if equal lhengofoexltho
; compare ;
slength of ;both strings :
inc si ; ;else increment mamory pvmter
inc count d sincrement counter to count ¥
) ; length of string :
Jjmp nextl ,)ump to xeadnext chm‘actér
exitl:

—--—-—--Compa!e length of both the stnng
moy al,count s

cmp al,count d

jne exit2 :

; !_"eamethen'gowe.ndelae
~ compare : :
. i ,smnssbytebyb!‘e i

mov si,offsei str_s i
mov dioffset str_d
up: mov ui.[si]’
S aL[dl]

o]ne aan

in’o si !

: s ihc‘di“

. Again, x the end of the program,

functions i.e. 05k and 4ch of interrupt
Tbefnncnonﬂuuedm(ﬁsphy
onmesmdndonwkvnew mon

B

Q_: Mlcréprocesgom (MSBTE - Sem

4 - Comp.) 447

7

exit2 R Mo

: mov ah,09h
Jeadxmsg2
‘ , int21h
;dg‘stiuation string AR
selse increment memory pé,'vn mov ah,dch
sincrement counter o int21h
~ ;length of string . onids :
;ju"x‘np‘lo read next character] end ; SR :

ety : ilgng‘th‘of-.the Destination string----—-._____
Rl o si,bﬁs\éﬁ:r'_d ;Initialize memory pir for
. sdestination string

No_w- v_ve will see the program for string comparison using nextl mova] ,[sl] 5 e
String instruction i.e. using CMPSB instruction if string is | i

= ::mca::s:mx:;ug:uon the defaul i ampal YA e o rampare il $
oot and, tinition bl:cks am‘ “];"-Sm;;)’ ar;m‘:‘;.fl‘;’; geentl il ;if equal then go to exit] ‘
respectively. < : Mo ;to compare length of both sml,lg!‘
’ . jelseincrement memory pointer

— After the execution of the above program, themessage
‘String are not same’ will be displayed on the screen.
— The lengths of both the strings are same, but the cases of

characters in both the string are different. Hence strings are
not same.

4.3.14(B) Using String Instructions

Syilabus Topié : String Operation Reverse

4.3.15 Dispiay String in Reverse Order

Following program demonstrate, the comparison of two = (MSBTE - W-16, S-17)

Aho:::s s Gy el [t Q.4.3.38 Write an ALP 1o reverse a string of 8 characters.
1. Tnitialize data and extra 4 jmp nextl ijump to read next character | Bt o &30 ol :
segment i.e. DS and ES. St Q. 4.3.39 Write an ALP to reverse the string. it
. 2. Find the length of source string. S A] . : | (Ref.sec.4315) FEEEANETS
: 3. Find the length of destination string, e ?fnp‘nr,e‘leng‘t‘h of both the string --————.. 3 : — =
4. Compare length of both the strings. B ng,cpunt;; r 5 ke | - InC languag.e, strrev function is used to perform su:ng
5. Iflength of both string are not same then £0 to step 10. : f,-mp Bl.count_d 2 : reverse operation. . : :
6. Compare string character by character. igueexi2 oL Sl length of both sirings are i | I assembly g e e opcram-m.. £
| 7. If characters of both the strings are not same then £ o step ey b s8ame then go to exit2 else — So, memory pointer and length c.ount.er should be lmtlall{ﬂi
10. . : i) e stiings byte by Byte ; to read string and then copy string in another blank string
8. Display message. ‘Strings are same’. ; cld A e gﬂ i . i variable in reverse order. :
i) } R or. AR mov’ch,(). e e .. — To reverse the string, first find out the length of the source
i 4 ‘ - 10 Display message String are not same’. i mvvc],coums o il) b | string, then add this value to memory pointer register to point
Flowchart : Refer Flowchart 49. S Tl by counter e, last character of the source string.

 slength of string

 jlnitialize memory pointer for
;80urce string‘

— Then copy last character from source string to first character
position of destination blank string. :

= Perfo;'m this operation continuously till first character of the
source string gets transfer to destination string by
decrementing memory pointer for source string and
incrementing memory pointer for destination string.

! ;Iniﬁiﬂize memory pointérl
_.;de“mnﬁon string b
- iCom

D character of 8o

— The following program performs string reverse operation and
~ displays it on screen. :

Algorithm

1. Initialize data segment.

2. Find length of source string. _

3. Copy source string to destinalio:} string in reverse order.

4. Display both source and destination string.

5. Stop. \

Flowchart : Refer Flowchart 50.

) ; 8086 Assamb'g Language Pf°9ramm| ‘

o sm,,g Operation Length

Algorithm

B - Y N PO e

Flowchart : Refer Flowchart 51.

 syllabus TOPIC 2 —

4.3.16 Find Len

gth of Strlng
= (MSBTE - W-14, S-16, w_17)

string, take one length counter ﬂnd

the len °f d“
To find gth read character from the string,

initialize memory pointer 0
Read character from the array and compare it with ‘$* which -
indicate end of the string.

If the character is not ‘$’ then increment length counter elge
stop reading character from the string.

Initialize data segment.
Initialize length counter.
Initialize memory pointer to read character from string, -
Read character from the string.
If character is ‘$’ then go to step 9. _
Increment length counter.
Increment memory pointer to next character.
Go to step 4.
« Stop.

Initialize data segment

Irmmmwmrlnsumwm S counter with 0
for source string

Er Microprocessors (MSBTE - Sem 4 - Comp) 449

» Program 31
miodel sma]l
.data
str.s db 'comvmas'
length db 0 :
.code
mov ax,@data

sInitialize ’d:ntg 'seg"rjie'm‘
mov ds,ax B gl
sinitialize ‘mémbry:poiht&"
',read chmeter)

mov si,offset str_s
next: mov al,[si]

cmp al,'$' scheck for end of stri Sg
je exit 5 if not end of stnng li;en o
incsi 5 memory, 1
inc length - ' ;increment lengvthcoqntier
jmp next ;jump 1o read next character
exit: LE o e 24
ends : :
end g9 5 ,
— The output of the above program can be seen by debugging
above program. ¢

— Hence, after the execution of the program, the vaiue of t.be
memory variable length will be 8 which is nothing but length
of the string.

Syllabus Topic : String Operation Concatenation

4.3.17 Concatenation of Two Strings
=» (MSBTE - s-15)

Q.4.3.42 Write an ALP ooncaienate two stnngs
algorithm e R
String 11 “Maharashtra Board" :
Stnngz 'ofTed'mlcaI Edueation' i

~ (Ref. sec. 4.3. 17) |]
_ The concatenation of two strings means merging of second
string in first string. ; ;
- For ple suppose, ‘Comput * and ‘Dep t' are two
separate Strings, after concatenation string will become
‘Computer Department’. ‘ o :
— The following program performs the concatenation operation.
Algorithm : i '
Initialize data segment.

Initialize memory pointers for source and _dﬁt_inmio.n.
Move memory pointer of source string tq énd of string. .
Copy characters from destination string to source smng ks

EABR ORI S

Stop.

4.3.18 Convi

. 086 Assembl Language Prerammin‘
of upper case character <5, P

_memi)xy poi'mer' o the

54 v

~ sfor source string

‘ ;Is memory pointer is at last
~ ;character
~ sif yes then jump to
' concatenate string

sinitialize memory pointer for
;destination siring
sread character

" ;check end of string
;if yes then exit
;else copy characler 1o source
;string

: y pointers for
;source and destination

. srepeat process till end of

5 destination string

send the source sﬁ'ing by
inserting $

sdisplay concatenate strings

.

iTerminate the program & exitto

Case

S l[weseedneASCHcharactermafauuz.xph,be,”;ewiu

- find that there is a difference of 20H betw:
upper.case.’ een lower case and

gmompmm (MSBTE - Sem 4 - Comp.) 4-50

Cll code S

For ¢:xamplt=.sgllﬁI : ode of lower character ‘a”is 61.
dmd 00 paracter from lower case (0 UPPET case, imp}y
SRSH'10 convert :m o sCII of Jower case character and

subtract 2 upper €ase to lower case, simply add

convert C [case character

20H to the A
Algorithm
Step 1:
IStep 2:
Step3:
Stepd:
Step 5:

Step 6: '
Step7: Increment memory poin

Step8: Goto Step 3
Step9: Stop
Program
"model small »
.data
str] db ‘computer$’
st u db 20 dup(‘$’)

r from
SCII of uppe

Initialize data segment
Initialize memory. pointe
Read character from source memory
If end of string then go to step 9
Convert from lower (© upper case
nto destination memory

ters by 1

rs for source and destination

Store i

.code
mov ax,@data ;Initialise data segment
mov ds,ax ‘
moy si,offset str 1 ;initialize. memory pointers

mov di,offset str_u,

next:, mov al,[si] ;Read character from array
_cmpal,’§’ “;If end of string then exit
Je exit - ’
sub al 20H ;Convert to upper case
fnov [di],q'l | ;8tore into memory ’
fnc 8l sincrement memory pointers l
inc di
o f‘f“P "9"“ ' 5 golo next charecter ‘

4.3.19 Convert “ ‘
el Upper Case String to Lower
= Incasge o conve;

- Teplace the jpg 1 from y

truction SUR Pper case to lower case simply

AL20H by ADD AL,20H
Step1:
Step2;
Step3 ;-
Step4 .
Steps :

Initial:
: m"um data segment :
mem, b
Read characte, o pointers for source and destination
T from 80urce Memory
8 then go (g step 9

@ Microprocessors (MSBTE - Sem 4 - Comp.) 4-51

Step7: Increment memory pointers by 1

Step8: GotoStep3

Step9: Stop - ;

Program 2 i LS
.model small R i i B
g , 2x100 =200 | |2x64H = C8H |

sl db “‘computers’ Ix1000 = 1000 | xORS
Total : 1234 Total: 04D2H

str_u db 20 dup(‘8)) '
.code 3 d
mov ax,(@data ;Initialise data segment
mov ds,ax
mov si,offset str | ;initialize memory pointers

mov dioffset str_u

next: mov al,[si] ;:Read character from array
cmp al,’$’ ;If end of string then exit
je exit
sub al,20H ;Convert to lower case

sstore into memory

moy [di],al

inc si ;increment memory pointers
inc di :
jmp next ;. goto next charecter

exit:
ends
end

4.3.20 Convert BCD Number to Hexadecimal
=» (MSBTE - W-16, S-18)

Q. 4.3.43 Write an ALP to convert BCD to HEX. :
(Ref. sec.4.3.20)" ,
Q. 4.3.44 Write algorithms and draw flow chart to convert
BCD no. to Hex numbers. Also write the
assembly language program for 8086.
(Ref. sec. 4.3.20)

The conversion method is based on the fact that BCD number
is in base 10 and the computer performs arithmetic in base 2.

— Here is the procedure. ¢

1. Start with the rightmost byte of the BCD number and
process; from right to left.
Multiply the first rightmost BCD digit by 1, the second
rightmost digit by 10 (0AH), the third by 100 (64H)
and 50 on, and sum the products. »

For example, convert BCD number 1234 to binary

The sum O4D2H is equal to decimal number 1234, We can
implement above method in following program. -
Flowchart : Refer Flowchart 53.

Initialize Hex_Num with 0
Initialize Mult_fact with 1000
Initialize Digit Count with 4 in CX

}

[nitalize Memory Pointer to read Dighs of BCD Number in S Tt
LA’

li Read Digi of BCD Number using memory pointer SI |-

ﬁMumpty Dight by Muit_fact, Result in AXJ

| Hex_Num = Hex_Num + AX [i.e. Result of Multiplication] J ‘

Divide Mult_fact by 10

Increment Memory Pointer SI by 1
Decrement Digit Counter by 1 o
to read next Digit of BCD Number

» Program 33

[Hexadecimal].

" conversion.

; mulhply by mldhphcanon £
factor

"ldd to hex_num :
clmnge muhpllcatxon fuctor

~ sincrement memory pointer:' é
;Is a last digit if no jump to up

In above program, the BCD number 1234 is converted to
04D2. The conversion is started from 1% digit of BCD number i.e.
1, then 2, 3 so on. Hence, first conversion is started with the
multiplication of 1 with 03E8H i.e. 1 X 03E8H, then 2 X 64h, 3 X
OAh and at Jast 4 X 1. .
- The result of the above program after the execution is 04D2H
stored at hex_num variable.
In Alternative method, the conversion can be started from

the last digit i.e. 4 X1, then 3 X OAh, 2 X 64H and 1 X 3E8H
respecuvely The following program performs this operation of

Program 34
db 1238 ;BCD Number

dw 0 ol Ay

Assembly &8 _20am
vert Hexadeclmal Number to acb

4.3.21 Co ation involves the previous steps_ i
This conversion operat oninue dividing the binary Dun,

3 of mulupl};llﬂz CO (0AH) until quouent is less thap 10, be
L ad:a::ders which can be only O through 9, succegggy
— Therel J
BCD number-
wemxad:ple Jet's convert 4D2H. back 10 BCD forpy a
- Asan€ :
gven bell):::dehylo Quotient | Remainder
4D2H/0AH | B :
7BH/0AH_| 0C J
0CH/0AH ORI =2 5)

_ Since, the quouenne 1 is less than the divisor (0AH), the

operation i complete.
_ The remainder along With the last quotient, form the By
result, from right to lefti.e. 1234.
The following program performs above conversion °Peran0n
l"lowchnrt : Refer Flowchart 54.

Initialize Data Segment

Initialize Digit Counter
Initialize Dec_num with O
Initialize shift Coumar with 12

[Load rex Number in AX

Divide AX by 10

[store RemulnderontoSTACK j

L Increment Dﬁgh Counter by 1j

Is
Quotientin AX > = 10
?

4

]

4

g Microprocessors (MSBTE - Sem 4 - Comp.)

» Program 35
.model small 0
hex_num dw 4D2h
deé_num dw 0
.(;ode : :
moy ax,@dava Initialize data segme
mov ds,ax ;

mov ch,00h

;Digit counter
mov bx,0ah sdivision factor
mov axhex_num ;load hei;(mi.mhetv:' i
pt: .'
mov dx,00 : e
: div bx ; dxvrdeut by 107
puﬁh dx ,sto.e remainder on stack 3
inc ch ;increment digit counter
cmp ax,0ah ;compare quotient with 10
jge mpt .;if quotient > 10 then mpeat
. dmsxon operation
inc ch sincrement digit counter at last
mov cl,lé 'lmuahze sluft coun!er
pt3: z S
and ax,Ofh ;mask lower nibble
shl ax,cl ;shift digit to appropriate
~ position !

add dec_num,ax ;add with dec_num

sub cl.4 :decrement shift counter
.pop ax ;xea‘l&vxiextBCD d!gll ,:; :
decich e wise ‘;decqueqydigi;munter"
muv.hl‘\','{-ch,) }Tenn_i‘m‘t'e‘px:'@’grgxﬁ ; Exit

nb2Thiv Wi I

; ends .

Pendi

— After the execution of lbc above pmgram we will get the
result 1234 in memory variable dec_num which BCD
equivalent of 4D2H.

-~ Inabove program, the value of digit counter mdlcaws number
of digits of converted BCD number.

4.k3 22 BCD to ASCll Conversion
Ifwcseev.heASCﬂcodeofallBCD

4323 ASClito BCD Conve

— To convert any ASCII to BCD,

i.e. from 009, are from 30H to 39H.

Assembly Language Pf°gramm

oz & o
mbers of 1’s in 8 blt Microprocessors (MSBTE - Sem 4 - Comp.)

cmmt nu —
» Pro!f"“ 36 (.) umbel'. . N

If CF # 1 then go to step 8.
> (MSBTE W~15) g

6.

7. Increment ones counter by 1.

8. Decrement rotation counter by 1.
9

If rotation counter # 0 then gd to step 5.

5 10. Stop.
Flowchart : Refer Flowehart s5@. : A
.model small
: data;
)
| ones db 0
Initialize ONES Counter to Count 1's :1 e

Inttialize Rotation Counter with 8
| mov ax,@data; Imhahzc data segmem;

| © moydsax b 1
Load number in AL | S

‘_ mov cx,8 ;initialize rotation

! moy al,num ;loaﬂ number in AL

r Rotate AL toward Right by 1 i up : roral,1 ;Rotate number by 1 bii right o

Syllabus Topic : Count Numbers of 1 and 0 in

; e \: . jmcdn sifbit# lthengotodn
H incones ;else incrementones 1_?y one e
4'3’24 ~ Count Numbers of One’s and Zero’s j‘ dn: loopup ~ 3d ¢ rotation counter
; in 8 Bit or 16 Bit Number "- ends ;if rotation counter # 0

sthen go to up

= (MSBTE - S-14, S-15, W-16, W-17, S-18)

¢ end “;stop 2
I Increment ONES Counter by 1 —I 'J _ " After the execution of the above program, the result of the

—'\1 program will be 8 numbers of ones in memory variable ones.

I Decrement Rotation Counter by 1 l p » Program 36(b) : Count numbers of 1’sin 16 bit
[number.

=» (MSBTE - S-16)

Q. 4.3.50 Write an assembly Ianguage pmg
_numbers of ‘1* (ones) in - 16
BX register. (Ref. Program 36(b))

Algorithm

Initialize data segment.

Initialize rotation counter by 16.

Initialize ones counter to count number of 1’s.

Load number. d ‘ (F

Rotate number left or right by 1.
IfCF#1thengotostep8. -

Increment ones counter by 1. = Pl
Decrement rotation counter by 1.

If rotation counter # 0 then go to step 5.

‘total numbers of 1's or 0’s can count in any number by
ﬁgﬁngﬂmnumbertowudnghtorleﬁ by either 8 times for

TS - S S

~ 10. Stop.
" Flowchart : Rd’u'!‘lowchrtSS(b)-

-Sem4-Comp)

it numbers of 0's in 8 bit

e e g

IliﬂalimZEﬂos Counﬁsrm&:oum 1's
Initialize Rotation Coumar wlth 8

" Load

number in AL

~ After the execution of the above program, the result of Ihc
program will be 4 numbers of zeros in memory vanable
zeros.

> Program 36(d) : Count numbers of 0’s and 1's In 16
bit number

Algorithm

Imtnhze data segment. ‘ e
Initialize rotation counter by 16,

Initialize zeros counter to count numbers of 0’s.
Immlmoncscountertocountnumbers of I's.
Load number,

Rm!enumherleﬂomm by 1.

7.‘5‘..“?'?\‘9-;5_&.;4-

Ifc"‘o"‘eﬂsﬂwmp 10,

"m‘mumerbn
Gotomp“

Iﬂaﬂze Data Segment |

| Initialize ZEROS Counter to Count 1's
Initialize Rotation Counter with 16

Load number in AL

| Rotate AL toward Right by 1 |

I Increment ZEROS Coun!ef‘m
sl

v
| Decrement Rotation Counter by 1 |

Is
Rotation Counter =0
?

Flowchart 55(d)

> Pro'granl B%d)

G o Procedu
~ Assembly Lang

UNIT -V ‘ : s

MNP
&

Syllabus oL E ’
* Procedure : Defining and calling, Procedure - PROC, ENDP, FAR, and NE
instructions; Parameter passing methods, Assembly Language Programs using

Macro : Defining Macros, MACRO and ENDM Directives. Macro with parameters. A
using Macros. ; 5

i
I
{
!

Syllabus Topic : Procedures

5.1 Procedures

=> (MSBTE - S-14, W-16, S-18)
Q.5.1.1 State the steps involved in ALP using re.

(Ret. sec. 5. R S8, Var

— A large program is difficult to implement even if an
algorithm is available, hence it should be split into number of
the independent tasks which can be easily designed and
implemented. .

— The process of splitting a large program into small tasks and

designing them independently is known as modnhr

= :arge program are more prone to errors and it is difficult to
locate and isolate errors.] s

= } instruction in a can
f- ml')e‘n‘t'edassmljf 0: The subpr ;ra:nmg;monl]ed as :

broutine or procedures in assembly language programming | g

which allows reuse of program codf. ;

— A procedure is a set of the program fmemems'thatcm,be
pmusedindependenuy.mdmuseagunmdmn. e A 2 g

= Hemamﬂwfounmpsm_llneedtobemompliﬂ;edmuder <G o

to call and return from a procedure. 1k e
1. Saveretumaddress A SEal
2. Procedure call - et — -
3. Execute procedure X 3 ‘UJ““"‘ et
4. Retum b sz w M
r

il .
it 3 4 proc. & Macro in Ass. Lam i 5 . v : ras
y F - icroprocessors (MSBTE - S - } i ; 7'
: @Mlcmpmcessors (MSBTE - Sem 4 - Comp.) 5-2 S s & procedure, Which calls Withip — P (em 4 - Comp.) 5-3 Proc. & Macro in Ass. Lang P& et ‘g
1 — . ~ A recursive pmid o work with complex. data istrycq, General form - The call can be of two types R &
What do you meant by re-entrant procedure ? jtself and are US T call d L
! (Ref. sec. 5.2) ‘W-14, W=15, 1-Mark called as trees: ; (hat calls itself. Procedure_Name PROC [NEAR/FAR] (a) Inter-Segment or near
SR ol i by e procé T recursive procedure 18 onctl o L s aple (b) Intra-Segment or far call
" (Ref. sec. 5.2) ; EVEITET| | i are two kinds of recursion : d,"ecltf a '_"d'f'ec‘- In = A near call refers to a procedure call which is in the same
Do ' i ; Fara rsion, the procedure calls itself and in injrg,, NEAR code segment as the CALL instruction and a far call refers to
‘ . Describe reentrant procedure with the help of d‘m(.m:‘ first procedure calls a second procedure, gy a procedure call which is in the different code segment from
| s;h:mahc SCopm mcgum(ZZils lehe first procedure. that of the CALL instruction. ;
{ . sec. 5. X < 474 in turn ; :
(Re Sec 5.2) ; S-15,'5-16, W-17, 4 Marks in Bl be observed in ' nuUmerous malhemanca] Procedure Codes Syntax
‘ - What is recursive and re-entrant procedure.| [- Recursi For example, consider the case of calculating g, CALL proced
ji bl (Ref. sec. 5.2) W-16, 4 Marks a’E""fh]me‘u ::umbef """" procedure_name :
: : % . 5 factorial of : e oo S e Operation performed -
326 Explain re-entrant and recursive procedure. r——r,me" Recursive Procedure pe
. (Ref.sec.52) S:18, 3Marks Sr. Re-entrant : ADD ENDP : ‘] 1. IFNEARCALL, then SP ¢ SP-2
o No. [e — This procedure can be called by using CALL instruction of Save IP on Stack
- The assembler directives PROC and ENDP are used to define The procedure which can be | Itis the, pfr ocedure which 80x86 microprocessor whenever required such as CALL [P« address of procedure
a procedure. interrupted, used and | calls itself. ADD. 2. IfFAR CALL, then SP <SP - 2 ;
S The dlrecFive .PROC indicates the beginning of the procedure 1. “reentered” wiLhonfl losing or — From this example, it is clear that the procedure will save a Save CS on stack
and the directive ENDP indicates the end’of the procedure to writing over anything. great amount of effort and time by avoiding the overhead of CS « New segment base
i senblec] . ! The flow of control could be [The flow of contr) writing the repeated pattern of code. address of the called procedure
= The directive PROC and ENDP must enclose the procedure interrupted by a hardware | could be caused by SP«SP-2
code which defines the subroutine. 2. | interrupt and transferred to an | CALL instruction and =) (b) ENDP : End of Procedure Save P on stack'and
— The procedures must be defined within the code segment Interrupt Service Routine | transferred to user’s — The directive ENDP informs the assembler the end of a IP « New offset address of
y © only. 5 (ISR) procedure. \j procedure. the called procedure
= 8086 microprocessor has single interrupt signal used by some — The directive ENDP and PROC must enclose the procedure
. extemnal device to interrupt the normal execution of program 5.2.1 Directives for Procedure e <" Difference between NEAR Call and FAR Call ¢
and call a specific procedure to Service the interrupt. > ; T
MSBTE - W-16, S- B f Sr. “Call %
~ Suppose 8086 wi the middle of executing factorial (ST, Generalforty No. Near Call e Call o
procedure when the iffterrupt signal occurred and also need to | (@, 5.2.7 State the functions of following directives Erocedure:Name ENDE A Far Call refers to a
| use the factorial procedure in the ISR. Framries AfNearg CallSreletsitofa procedure call which is in |
| B = ; 1.". *PROC 2. ENDP P! procedure call which is in : ; “
en Interrupt occurs, execution goes to the ISR and ISR RPN FACTORIAL ENDP : End of the procedure 1% the different code segment |
il then calls the factorial procedure when it needs it. (Ref. sec. 5.2.1) \W-16,°2/Marks 3 FACTORIAL $: éame (_:Ode se;igme g from that of the CALL ,
i) = The RET instruction at the end of the factorial procedure Q.5.2.8 Give the syntax for defining a procedure. HEXTOASC ENDP et L |[f i
Wit L returns execution to ISR. - (Ref. sec. 5.2.1) -S=17:2 Marks 5 | Also called as Intra- | Also called as Inter- ?
| = A special retum instruction at the end of the ISR returns the Q.529 List directives T i i : call S = ol !
| ¢ 4 ! 3 . 5.2, use! : = ,
, ¢ execution to the factorial procedure where it was executing Ref. B ocedure. Ot SylisbusiToplai- CALLIsnc RETIISHUCHOUN o A far call replaces the old |
j when the interrupt occurred as shown in Fig.5.2.1. (Ref. sec. 5:21) W-17.:2 Marks 3. A Near. calffrcpiaccsiitbe CS:IP pairs with new |
iy f ; A old IP with new IP. 3 3
i — The factorial procedure must be written in such a way that it i CS:IP pairs.
i 1l ' can be interrupted, used and re-entered without losing or Directives For Proced 52.2; Procedure Call [CALIIISIERERH] The val f old IP i The valuo of thelokd S 1K
, | _writing over anything and such procedure is called as - e 4. i o b pairs are pushed on to the
i re-enirant. J . y =» (MSBTE - S-14, W-14, S-15, W-15, pushed on to the stack. Py i i
1 ~ To be re-entrant, a procedure must first of all push the flags (a) PROC : Procedm: S8 SATWATSLE) 5., [Less stack tlocations Raref{iMoreHstackRlocations e
-‘ all regist 1 i —~ : ired. quired e
| e e — v D e WO g e o] |
4 j 0 pass parameters. (6) ENDP : End of Procedure (Ref. sec. 5.2.2) SHRECRMENAIEICS]) | 5.2.3 Procedure Return [RET Instruction]
{4 -~ —
| | MAIN PROGRAM Fi A i two differences of FAR and NEAR
[8. 5.2.2 : Directi Q.5.2.11 Write any =» (MSBTE - W-17, S-18
| FACTORIAL T rectives for Procedure procedure. (Ref. sec. 5.2.2) ! = (2)
i / = (@ PRoC: p, - AERCREPAELS] | | (@.5.2.16 Describe RET instruction. :
| : Procedure S - e
i | B e Rowmw | = The directive pRoc Q.5.2.12 Explain NEAR CALL and FAR CI—“ i e
| sl I tpieg follows with (pe Indicates beginning of o procedure and (Ref. sec. 52.2) SHIL I - The instruction RET is used to transfer program control from
‘ /; | . rogram S fame of the procedyre. Q. 5.2.13 Explain NEAR and FAR procedure. : : the procedure back to the calling program i.e. main program
i = ET] TRET indicaing AR or NEAR follgus the PROC directive (Ref. sec. 5.2.2) : or procedure following the CALL. The RET instruction are of
' et o calng C s P oTa procedure Q.5.2.14 Compare FAR and NEAR procedure. tWo types : i - /
| o i g i
| " Fig:5.2.1 : Re-entrant proced : the type Specify Pecified, thep assembler assumes NEAR 35 (Ret. sec. 52.2) S : @ Near RET or iotescpment i
B2t procedure flow diagram = The o <8 Q.5.2.15 Explein CALL instruction. (b) Far RET or intra segment return.
| ! . ' 15 Of a proceg 2 SRS
Other procedures are recursive procedure. decide whe(he, x co:;‘ WPe specifier helps (he assembler 0 (Ref. sec. 5.2 .) : e
; T The directye PROC RET a5 near return or far return. = TheCAlLingees l; "seﬁ;osm;eﬁm address on
] 7] is : ! bpro or a procedure
ey - enclose Used with ; P (0 subprogram
i 5 1€ procedure code. the directive END the stack. = g
i J ‘ i

proc. & Macro in Ass. Lang, Pro

@ Microprocessors (MSBTE - Sem 4 - Comp.) 54
—_—

— If a procedure is declared as near, the execution of the RET
replaces the IP with a word from the top of the stack which
contains the offset address of the instruction following the
CALL instruction.

— Hence such return is called as near return because transfer of
the control is within the segment.

— If a procedure is defined as far, ‘the execution of RET
instruction pops two words from the stack and places them
into the registers IP and CS to transfer control to the calling
program. :

Syntax

RET

Operation performed

1. For NEAR Return, then IP « content of top of stack
SP«SP+2

2. For FAR Retumn, then
IP « contents of top of stack SP « SP + 2
CS « contents of top of stack
SP« SP +2

Syllabus Topic : Parameter Passing Methods

i 'ﬁmo@“".1 :

[l

MOV AX, 100 <7

call p Ut General purpose reg

"
Sl ’ AX,BX.CX,DX
B

= SI,DI

SP,BP

[Procedue2’

MOV BX,AX =~
Add AX, Num

CS,DS,ES,ss

Fig. 5.2.3

5.2.4(B) Passing Parameters on the Stack

=> (MSBTE- S-15)

Q.5.2.20 Expléin the stack operation. Why 'PUSH and
POP instructions are used before and after
CALL subroutine ?

'S-15,:4 Marks

(Ref. sec. 5,2.4(B))

5.24 Parameter Passing in Procedure
=> (MSBTE - S-14, W-15)

8086 assembly language procedure.

(Ref. sec. 5.2.4)
5.2.‘53 pascn‘be with suitable example how a parameter
| is passed on the stack in 8086 assembly

~ language procedure. i .
W-15, 4 Marks

(Ref. sec 5.2.4)
Parameters can be'passed between procedures in any of three
ways : through general purpose registers, in an argument list, or on
the stack.

5.2.4(A) Passing Parameters through the
Registers

) With one suitable example explain' how a
neter is passed in register in 8086
assembly language procedure.)
(Ref. sec. 5.24(A)
— The processor does not save the state of the general
registers on procedure calls,

-purpose

.2*'(Explain various ways of parameter passing in| [~

~ To pass a large number of parameters to the called procedure,

the parameters can be placed on the stack, in the stack frame
for the calling procedure.

Here, it is useful to use the stack-frame base pointer (in the
BP register) to make a frame boundary for easy access to the
parameters.

= The stack can also be used to pass parameters back from the

called procedure to the calling procedure.
Procedurs {

SP

Relum Address |SP +2

SP+4

= A calling procedure can thus pass up to six pmmclérs to i
. the Fig. 524

caue:ie pn:cedum tl;ly c:gymg the parameters into any of these T St

registers (except the SP and BP registers) prior to executin ck Operati

the CALL instruction. ¢)
— The called procedure can likewise Pass parameters b T Stckisy

I ack reserved S
the calling procedure through general-purpose registers, Yo ‘data temporgr femory location in a memory to StO®

Microprocessors (MSBTE - Sem 4 - Comp.)
—

5.2.4(C) Passing Parameters in an Argument

5-5

The PUSH and POP instruction are available for stack
operation in 8086.

The PUSH instruction is used to write/store data on to the
stack and the POP instruction is used to read data from the
stack.)

When CALL instruction is used to execute subroutine, then
some or all of the instruction of the subroutine may use the
register for intermediate calculation which may contains
some important data before calling subroutine. .

So during the execution of the subroutine, the old important
data in the registers will be lost.

Hence the PUSH instructions -are used at the start of
subroutine to store the contain of registers temporarily on the
stack and at the end of subroutine POP instructions are used
to restore same register with data from stack.

List

An alternate method of passing a larger number of parameters
(or a data structure) to the called procedure is to place the
parameters in an argument list in one of the data segments in
memory.

Procedure 1
u
|}
|
= Data segment
MOV COUNT,AX+
GALL COLRL MY_DATA segment
a B
" Ol
a ®
[}
NUMDB 10 |
> COUNT DW 500
Count Proc / a ;
B
n a
] MY_DATA ENDS
. 2

]
MOV ,AX,COUNTY

MOV CC-) UNT,AX

INC AX

5.2.5 Saving Procedure State Information

Fig. 5.2.5

A pointer to the argument list can then be passed to the called

procedure through a general purpose register or the vslack.
Parameters can also be passed back to the calling procedure

in this same manner.

The processor does not save the contents of the general-

of the general-purpose registers that it will need when it
' resumes execution after a return, a
— These values can be saved on the stack or in memory in one
of the data segments. |

- The PUSH and POP instruction facilitates saving and
restoring the c: of the g | purpose regist

~ If a called procedure changes the state of any of the segment
registers explicitly, it should restore them to their former
value before executing a return to the calling procedure.

- If a calling procedure needs to maintain the state of the
FLAGS register it can save and restore all or part of the
register using the PUSHF and POPF instructions.

— The PUSHF instruction pushes the word of ‘the FLAGS
register on the stack. « .
— The POPF instruction pops a word from the stack into the

+ word of the FLAGS register. y

Syllabus Topic : Macros

5.3 Macros

gisters or the FLAGS register on

=» (MSBTE - S-14, W-1 5, S-16, W-16, S-17, S-18)

Q.53.1 What is MACRO? Define. m%
] example. (Ref. sec. 5.3)
Q.53.2 Define MACRO. List an
'(Ref.sec.53)

Q.5.3.3 Whatis meant by m

' (Ref. sec. 5.3)
Q.5.3.4 Define MACRO with
- In bly | ge prog q of the codes

of the same pattern are repeated frequently at different places
which perform the same operation on the different data of the
same data type. .

- Such repeated code can be written separately as a macro.

— When assembler encounters a macro name later in the source
code, the block of code associated with the macro name is
substituted or expanded at the point of call, known as macro
expansion. ;

— Hence macro is called as open subroutine.

— Macros should be used when its body has a few program
statements; otherwise, the machine code of the program will
be large on account of the same code being repeated in the
position where macros are used. :

— The process of defining macros and using them to simplify
the programming p is known as programming.

purpose registers, segment re
a procedure call.

=

~ (¢) Makes program more readable.

@ Mﬁ:hwummmmnmmm

5.4 Defining Macros

56
- () MACRO ,
(@ Simplify and reduce the ‘e directive MACRO inforrs S ier U Deginning
amount of repetitive coding. s
(b) Reduces ermors caused by repetitive coding :r;m_,,,, of name of & MACTO followed by keyword MACRg

ments if any
lnﬂmlﬂmlf:‘: MACRO and ENDM must enclose

- The direotiv aration Of small part of code, which have b

jon, decl
::l:::::r:md al the invocation of a macro.

General form
Macro_Name MACRO
[Argumently..coeee ArgumentN]

Give an example indicating how a MACRO can
mm-m-umamh

= For macros that you want 10 include in your program, you
must first Gefine them.

- Am?deﬁnﬁmmshdmuyde&udm

~ The assembler directive MACRO indicates 1o the assembler

the beginning of the macro and the directive ENDM indicates

‘the end of the macro 1o the assembler.

— The directives MACRO and ENDM must enciose the

definitions, declaration, or a small part of a code which have

10 be submitied while translating them 1o machine code by

the assembler.

— Since the program contzins 2 definition of the macro, the

mm&bodydnxdcﬁmm,mg

the instructions called as macro expansion.

Syllabus Topic : MACRO and ENDM Directives
541

Directives for Macros '
> (MSBTE - W-14)

> ©) ENDM: END o1y 0

! dlfﬂﬂlve MA

Gu.ug,,m

e S

"DISP MACRO MSG
PUSH AX
PUSH DX 1
MOV AH,09H
LEA DX MSG
INT 21H
POP DX
POP AX
ENDM
= The above macro whose name is DISP can be called by
writing macro name along with its argument if any in the
progr herever it is required i.e. number of times.
— The macro function are called as a open subroutine, macro
gets expanded if a call is made to it. !
~ The difference between macros and procedures is that, a call ‘
to macro will be replaced with its body during assembly time

whereas the call to the procedure will be an explicit transfer
of program control to the called procedure during run time.

~ The concept of macro is illustrated below.
DATA
MSGl DB “Well Com to Computer Department$’
MSG2 DB “Hardware [abnmory &
DISP MsC1 : 4
DISP MSG2 e |

I

AT

,‘
]
-
|

F - .
8::: :bom 42 e::mpk 1Lis clear that the macros will save &
effort and time by avoiding the overhead
Patiern of code,

"’““"Bﬂ!mpmed

The directiy,
mﬂcm © ENDM informs the assembler the end of the

efinition, e, CRO and ENDM must enclose '”
have 10 be gubggineg O X SMall part of the code W
tuted at the j Invocation of the macro.

i

proo. & Macro In Ass, Lang, E [

@ Microprocassors (MSBTE - 8am 4 - Comp,

Example

DISP MACRO MSG
PUSH AX
PUSH DX
MOV AH,09H
LEA DX MSG
INT 21H
POP DX
POP AX
ENDM

=* (c) LOCAL

~ Some macro requires that you define data item and
instruction labels within the macro definition,

-~ If you use the macro more than once in the same program and
the assembler defines the data item or label for each
occurrence, the duplicate name would cause the assembler to
generate error messages.

~ To ensure that each generated name is unique, code the
LOCAL directive immediately after the MACRO statement,
even before comments.
General form
LOCAL dummy_l,dummy_2.........
;One of more dummy argument.
Example
;Macro to Reverse the given string
strrev macro strl 8tr2,count
local up Y
local next : ¥
local exit L.
push ax
pushsi ° resill "
push di
mov si,offset strl
next : mov al,fsi]
cmp al,'$’
je exit ;
inc si
inc count
jmp next
exit @ mov di,offset str2
~ upl: decsi e L
“moy al,[si] s :
% moy [di}al
imdx PPl
e (T
’f.:.w.m- R
[dq_&"l {-i:.'y ‘

R j:.

mmuum_m
INCLUDE.

Tt is used to place all the data and
tﬁlehwn.hﬂrorh:hﬂ”

proc.&

Mecro in Ass. Lang. Prog,
—

R - = .
Inabove example, the value of str_s, str_d and count will be
~ substituted to macro argument strl, str2 and count
respectively. °

that can
gram statements
::o processed independently

and reuse again and again-

The machine code for the
group of instruction in the
procedures needs tobe
Joaded in to main memory
only once.

Less main memory i

q

PMU" .nd MICTO

A macro is a set of the
program statements thay

Macro.

can be reuse again apg
again by using macro name
and hence macro is calleq
as open subroutine.

The machine code for the
group of instruction in the
MACRO needs
loaded in to main memory

wherever MACRO is used,
|~ el]

More main memory s

required

o

statements generated for a macro expansion, depending on
lheaxgumems supplied in the macro invocation.
- Conditional Assembly is ly used to deseribe this

CALL and RET instructions
are used to call procedure
which increase the overhead
execution time involved in
calling and returning from a
procedures.

The macro avoids the
overhead execution time
involved in calling and
returning from a macro as
macro does not requires
CALL and RET
instructions.

to be

‘moy ax,num]

The procedures needs the

The Macro does not need

stack comp y.

stack compulsory.

feature. It is also referred to as conditional macro exp ‘
Suppose we have written a macro to display string on the
screen as given below - : } :

- MOV AH, 09H
- MOV DX, OFFSET MSG
INT2IH
kL BNDM FRA ;
M,:’l%l.l,n‘ there are two._suing defined in STR1 and STR2,

Syllabus Topic : Assembly Language
Programs using Procedure

5.5 Programming using Procedures

5.5.1

In

this
Operations,

Program to Perform Arithmetic
Operation Such as Addition,
Subtraction, Multiplication and Division

using Procedures

= (MSBTE - W-14, W-15)

Program

call add_num
cﬁll_sub_-nﬁfn! i
chumul;!;um e e
calldivnum. ;Call,
"~ movahdch
B eI
édﬂ_num pmc W ‘

e proc. & Macro in Ass. Lang. Prog,
! To—
Microprocessors - 5
& (MSBTE - Sem 4 - Comp.) 5-10 :
Program mov ds,ax b oo edure to find smalleg;
.model small call smallest
' : number
data
amay dw 12h,11h21h,9h,19h movsmallax
’ -Exit to DO:
_code mov ah,dch 3
.2 ~ moy ax,@data ;Initialize data-segment int 21h
. movds,ax smallest proc
= :’) - Initialize word counter
e order - procedure mov CXy ¢
i = st s . Initialize memory pointer
b3 miberalin D Tinscrder mov si,offset array
4 mov ah,4ch mov ax,[si] jread n Erom anray,
| int21h dec cx
_ dsc_order proc up: inc si
* mov bx,5 ;Initialize pass counter inc si
- upl: cmp ax,si] ;compare it with next number
lea si,array ;Initialize memory pointer je next :if number is smallest then
: mov ex.4" ;Ininalwe word counter : * compare it
up: : - mov ax,[si] ;it next number
mov ax,[si] next: :decrement word counter by 1
cmp al,[si+2] ;Compare two mmmber loop up ;if it is NOT ZERO, compare with
; jnedn Enmber > et b this next number in array
i xchg ax,[si+2] sinterchange numbers ret sreturn to calling program
i xchg ax.[si] endp
d!‘.‘= add si,2 sincrement memory pointer ends
loop up ;decrement word counter if # 0 end
sthen up
dec bx ;decrement pass counter if # 0 bl Pl'ogram to Find LargeSt Number from
; ’ gt A the Array using Procedure
2 sthen go to upl jnz upl ode
ret - -, retnm 1o calling program - .mode] small
endp ~.data
_ends amay dw 134h,65h,876h,976h,2h
gisend large dw o
5.5.4 Program to Find Smallest Number from T
the Array using Procedure 5
Moy ax, v J
Qs 2 (MSBTE-5-17) moy cia,;fdma sInitialize data segment
.5.3 Write an ALP to find smallest number usj call larges
t
procedure (Ref. sec, 5.5.4) m&g B icall procedure to find
“ L‘.model small mov large,ax smallest number
f .data N i mov ah dch e
. amay dw 134h,65h,876h976h.2h int 21p (52t DOS
. emall dw 0 largest prog
o ! .cdc_l_e' ‘ ; mov cx.5§
i mov ax,@data ;Initialize data segment moy gj oset it ;Initialize word counter |
7 iInitialize memory pointer
/

;decrement word counter if NOT
; ZERO, compare with next

next : loop up

; number in array
ret ;réturn to calling program
endp
ends
end

5.5.6 Program for Addition of Series of 8 bit
Mumbers using Procedure

=> (MSBTE - S-16, W-17)

Q.5.5.4 Write an assembly language program for sum of
series of 10 numbers using procedure.

@a Microprocessors (MSBTE - Sem 4 - Comp.) 5-11
mov ax,|[si] ;read number from array moy dl,;x
dec.cx call sum

up : incsi sum proc s g
ine si mov clcount mmnlne by(e eoumer
cmp ax,[si] ;compare it with next number mov si,offset list ; i 'ﬁnluenmiory pointer
jnc next ;if number is smal]eell then compare mov al,0 § ritia
mov ax,[si]]

up: addal,fsi]

" inc si
dec cl
jnz up

5.5.7 Program using Procedure for
Performing the Operations -
Z=(A+B)*(C+D)

Q.55.6 Wnteassemblypmgm'

(Ref. sez. 5.5.6) (S-15, 4 Marks) performing the operations .
Q.5.5.5 Write ALP for sum of series of 10 numbers using Draw flow chart and write
procedure. Also draw fiow chart for the same. (Ref.sec.55.7)
(Ref. sec. 5.5.6) (W-17,8Marks)| | —
FiC L4
Flowchart

Initialise Data Segment

[Call Near procedure for Sum of Series |

T
b A

[r procedure for Sum of Series JJ
Zwe |

Es

=
r Store result

Program

.model small

.data 4
list db 12345678910
res db 0
count db 10 ;

.code

mov ax,@data ;lniﬁnlize data segment

r Initialize data segment J

| Load register ALwitha |
[Load register BL with b J i@
i

[call Procedure for addition |

[soreresuftforaddtion |

r Load register AL with ¢ |

r Load register BL with d |

>

[call Procedure foraddm;| | d=td :
. v HL S
: | Multiply result of 2 sum -~ | T i
0 o
[storefinal result | E:

5.5 8 Proeedum to find Factorlal ofa Number
> (msm W-14, 517, s-1a)

Program to find Factorlal of a N"mbep

using Procedure

The program given below is used to find factorial of mlnﬂ)er
8 or less than 8

[T iroprocessors (MSBTE - Sem 4 - Comp.

5.5.10 Program to Multiply 8 bit Num .
uslng NEAR Procedure -

> (MSBTE W-14, W-15)

(Ref sec. 5.5. 10)

Flowchart

r Call Near procedure for multiplication |

I l procedure for multiplication ”

Store result

561 Simple rogrgn;

Numbersi

g |

Mag

proc. & Macro In Ass. Lang. Prog

563 Largest Numbe
Macro

MR R UR (7

Program tg co
Ncatenatin
g to Destination Strlr?gsource

=0
r In the Array using

msg2
msg3
count
«code

int21h
pop dx

pop ax
endm

.dala
sir s db
str.d db
“msgl db
db 10,13,
db 10,13
db 0

mov ax,@data
mov ds,ax

show_msg msgl dlsplay maénges

show_msg str_s

show_msg msg2
show_msg str_d

: mov n,offselmr 8 ; move Y

.7 _'iisliig ch':rbs, Assembly Langdage
~ Program to Solve Z = (A + B) *(C + D)

&

\ e

